Cognitive, Affective, & Behavioral Neuroscience

, Volume 7, Issue 4, pp 317–326 | Cite as

Avoiding another mistake: Error and posterror neural activity associated with adaptive posterror behavior change

  • Robert HesterEmail author
  • Natalie Barre
  • Jason B. Mattingley
  • John J. Foxe
  • Hugh Garavan


The magnitude of posterior medial frontal cortex (pMFC) activity during commission of an error has been shown to relate to adaptive posterror changes in response behavior on the trial immediately following. In the present article, we examined neural activity during and after error commission to identify its relationship to sustained posterror behavior changes that led to performance improvements several trials into the future. The standard task required participants to inhibit a prepotent motor response during infrequent lure trials, which were randomly interspersed among numerous go trials. Posterror behavior was manipulated by introducing a dynamic condition, in which an error on a lure trial ensured that the next lure would appear within two to seven go trials. Behavioral data indicated significantly higher levels of posterror slowing and accuracy during the dynamic condition, as well as fewer consecutive lure errors. Bilateral prefrontal cortex (PFC) and pMFC activity during the posterror period, but not during commission of the error itself, was associated with increased posterror slowing. Activity within two of these regions (right PFC and pMFC) also predicted success on the next lure trial. The findings support a relationship between pMFC/PFC activity and adaptive posterror behavior change, and the discrepancy between these findings and those of previous studies—in the present study, this relationship was detected during the posterror period rather than during commission of the error itself—may have resulted from the requirements of the present task. Implications of this discrepancy for the flexibility of cognitive control are discussed.


Anterior Cingulate Cortex Dynamic Condition Cognitive Control Default Mode Network Blood Oxygen Level Dependent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115–116.PubMedCrossRefGoogle Scholar
  2. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.PubMedCrossRefGoogle Scholar
  3. Barbarotto, R., Capitani, E., Jori, T., Laiacona, M., & Molinari, S. (1998). Picture naming and progression of Alzheimer’s disease: An analysis of error types. Neuropsychologia, 36, 397–405.PubMedCrossRefGoogle Scholar
  4. Bellgrove, M. A., Hester, R., & Garavan, H. (2004). The functional neuroanatomical correlates of response variability: Evidence from a response inhibition task. Neuropsychologia, 42, 1910–1916.PubMedCrossRefGoogle Scholar
  5. Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.PubMedCrossRefGoogle Scholar
  6. Brass, M., & von Cramon, D. Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16, 609–620.PubMedCrossRefGoogle Scholar
  7. Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.PubMedCrossRefGoogle Scholar
  8. Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., & Cohen, J. D. (2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences, 97, 1944–1948.CrossRefGoogle Scholar
  9. Carter, C. S., MacDonald, A. W., III, Ross, L. L., & Stenger, V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: An event-related fMRI study. American Journal of Psychiatry, 158, 1423–1428.PubMedCrossRefGoogle Scholar
  10. Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I. H., et al. (2006). Executive “brake failure” following deactivation of human frontal lobe. Journal of Cognitive Neuroscience, 18, 444–455.PubMedGoogle Scholar
  11. Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93–103.PubMedCrossRefGoogle Scholar
  12. Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25, 11730–11737.PubMedCrossRefGoogle Scholar
  13. De Zubicaray, G. I., Andrew, C., Zelaya, F. O., Williams, S. C. R., & Dumanoir, C. (2000). Motor response suppression and the prepotent tendency to respond: A parametric fMRI study. Neuropsychologia, 38, 1280–1291.PubMedCrossRefGoogle Scholar
  14. Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., et al. (2006). A core system for the implementation of task sets. Neuron, 50, 799–812.PubMedCrossRefGoogle Scholar
  15. Drevets, W., & Raichle, M. (1998). Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cognition & Emotion, 12, 353–385.CrossRefGoogle Scholar
  16. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.PubMedCrossRefGoogle Scholar
  17. Garavan, H., Ross, T. J., Murphy, K., Roche, R. A., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17, 1820–1829.PubMedCrossRefGoogle Scholar
  18. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences, 96, 8301–8306.CrossRefGoogle Scholar
  19. Gehring, W. J., Goss, B., Coles, M., Meyer, D., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.CrossRefGoogle Scholar
  20. Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–520.PubMedCrossRefGoogle Scholar
  21. Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and posterror compensatory behavior. Psychophysiology, 40, 895–903.PubMedCrossRefGoogle Scholar
  22. Hester, R., Fassbender, C., & Garavan, H. (2004). Individual differences in error processing: A review and reanalysis of three eventrelated fMRI studies using the GO/NOGO task. Cerebral Cortex, 14, 966–973.CrossRefGoogle Scholar
  23. Hester, R., Murphy, K., Foxe, J., Foxe, D., Javitt, D., & Garavan, H. (2004). Predicting success: Patterns of cortical activation and deactivation prior to response inhibition. Journal of Cognitive Neuroscience, 16, 776–785.PubMedCrossRefGoogle Scholar
  24. Kaufman, J. N., Ross, T. J., Stein, E. A., & Garavan, H. (2003). Cingulate hypoactivity in cocaine users during a GO—NOGO task as revealed by event-related fMRI. Journal of Neuroscience, 23, 7839–7843.PubMedGoogle Scholar
  25. Keppel, G. (1991). Design and analysis: A researcher’s handbook (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  26. Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an fMRI study of trial-to-trial adjustments on the Simon task. Neuro-Image, 33, 399–405.PubMedGoogle Scholar
  27. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.PubMedCrossRefGoogle Scholar
  28. Kopp, B., & Rist, F. (1994). Error-correcting behavior in schizophrenic patients. Schizophrenia Research, 13, 11–22.PubMedCrossRefGoogle Scholar
  29. Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15, 1028–1038.PubMedCrossRefGoogle Scholar
  30. Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: A model and a method. Journal of Experimental Psychology: Human Perception & Performance, 10, 276–291.CrossRefGoogle Scholar
  31. MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.PubMedCrossRefGoogle Scholar
  32. Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H., & Garavan, H. (2006). The anterior cingulate and error avoidance. Journal of Neuroscience, 26, 4769–4773.PubMedCrossRefGoogle Scholar
  33. Murphy, K., & Garavan, H. (2005). Deriving the optimal number of events for an event-related fMRI study based on the spatial extent of activation. NeuroImage, 27, 771–777.PubMedCrossRefGoogle Scholar
  34. Noble, C. E. (1957). The length—difficulty relationship in compound trial-and-error learning. Journal of Experimental Psychology, 54, 246–252.PubMedCrossRefGoogle Scholar
  35. Pochon, J. B., Levy, R., Poline, J. B., Crozier, S., Lehéricy, S., Pillon, B., et al. (2001). The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: An fMRI study. Cerebral Cortex, 11, 260–266.PubMedCrossRefGoogle Scholar
  36. Polli, F. E., Barton, J. J., Cain, M. S., Thakkar, K. N., Rauch, S. L., & Manoach, D. S. (2005). Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proceedings of the National Academy of Sciences, 102, 15700–15705.CrossRefGoogle Scholar
  37. Ridderinkhof, K. R., Nieuwenhuis, S., & Bashore, T. R. (2003). Errors are foreshadowed in brain potentials associated with action monitoring in cingulate cortex in humans. Neuroscience Letters, 348, 1–4.PubMedCrossRefGoogle Scholar
  38. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.PubMedCrossRefGoogle Scholar
  39. Russell, J., & Jarrold, C. (1998). Error-correction problems in autism: Evidence for a monitoring impairment? Journal of Autism & Developmental Disorders, 28, 177–188.CrossRefGoogle Scholar
  40. Sakai, K., & Passingham, R. E. (2003). Prefrontal interactions reflect future task operations. Nature Neuroscience, 6, 75–81.PubMedCrossRefGoogle Scholar
  41. Taylor, S. F., Martis, B., Fitzgerald, K. D., Welsh, R. C., Abelson, J. L., Liberzon, I., et al. (2006). Medial frontal cortex activity and loss-related responses to errors. Journal of Neuroscience, 26, 4063–4070.PubMedCrossRefGoogle Scholar
  42. Ullsperger, M., & von Cramon, D. Y. (2003). Error monitoring using external feedback: Specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. Journal of Neuroscience, 23, 4308–4314.PubMedGoogle Scholar
  43. Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cerebral Cortex, 15, 535–544.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  • Robert Hester
    • 1
    Email author
  • Natalie Barre
    • 2
  • Jason B. Mattingley
    • 1
  • John J. Foxe
    • 3
  • Hugh Garavan
    • 3
    • 4
  1. 1.Queensland Brain InstituteUniversity of QueenslandSt. LuciaAustralia
  2. 2.University of MelbourneParkvilleAustralia
  3. 3.Nathan S. Kline Institute for Psychiatric ResearchOrangeburg
  4. 4.Trinity CollegeDublinIreland

Personalised recommendations