Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Cognitive, Affective, & Behavioral Neuroscience
  3. Article

On how high performers keep cool brains in situations of cognitive overload

  • Published: June 2007
  • Volume 7, pages 75–89, (2007)
  • Cite this article
Download PDF
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript
On how high performers keep cool brains in situations of cognitive overload
Download PDF
  • Susanne M. Jaeggi1,
  • Martin Buschkuehl1,
  • Alex Etienne2,
  • Christoph Ozdoba3,
  • Walter J. Perrig1 &
  • …
  • Arto C. Nirkko3 
  • 4283 Accesses

  • 96 Citations

  • 47 Altmetric

  • 7 Mentions

  • Explore all metrics

Abstract

What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants “keep cool” in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.

Article PDF

Download to read the full article text

Similar content being viewed by others

Neural mechanism by which physical fatigue sensation suppresses physical performance: a magnetoencephalography study

Article 24 October 2021

Takashi Matsuo, Akira Ishii, … Takahiro Yoshikawa

Acute aerobic exercise benefits allocation of neural resources related to selective attention

Article Open access 27 May 2023

Tomasz S. Ligeza, Marie Julie Vens, … Markus Junghofer

On Supertaskers and the Neural Basis of Efficient Multitasking

Article 16 September 2014

Nathan Medeiros-Ward, Jason M. Watson & David L. Strayer

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Bor, D., Cumming, N., Scott, C. E. L., & Owen, A. M. (2004). Prefrontal cortical involvement in verbal encoding strategies. European Journal of Neuroscience, 19, 3365–3370.

    Article  PubMed  Google Scholar 

  • Bor, D., & Owen, A. M. (2007). A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory. Cerebral Cortex, 17, 778–786.

    Article  PubMed  Google Scholar 

  • Bosshardt, S., Degonda, N., Schmidt, C. F., Boesiger, P., Nitsch, R. M., Hock, C., & Henke, K. (2005). One month of human memory consolidation enhances retrieval-related hippocampal activity. Hippocampus, 15, 1026–1040.

    Article  PubMed  Google Scholar 

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.

    Article  PubMed  Google Scholar 

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology & Aging, 17, 85–100.

    Article  Google Scholar 

  • Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., et al. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. Journal of Neuroscience, 17, 391–400.

    PubMed  Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.

    Article  PubMed  Google Scholar 

  • Callicott, J. H., Bertolino, A., Mattay, V. S., Langheim, F. J., Duyn, J., Coppola, R., et al. (2000). Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex, 10, 1078–1092.

    Article  PubMed  Google Scholar 

  • Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 20–26.

    Article  PubMed  Google Scholar 

  • Carlson, S., Martinkauppi, S., Rama, P., Salli, E., Korvenoja, A., & Aronen, H. J. (1998). Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cerebral Cortex, 8, 743–752.

    Article  PubMed  Google Scholar 

  • Caviness, V. S., Jr., Meyer, J., Makris, N., & Kennedy, D. N. (1996). MRI-based topographic parcellation of human neocortex: An anatomically specified method with estimate of reliability. Journal of Cognitive Neuroscience, 8, 566–587.

    Article  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24, 87–185.

    Article  Google Scholar 

  • Cowan, N. (2005). Working memory capacity. New York: Psychology Press.

    Book  Google Scholar 

  • Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100.

    Article  PubMed  Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning & Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  • D’Esposito, M. (2001). Working memory. In R. Cabeza & A. Kingstone (Eds.), Handbook of functional neuroimaging of cognition (pp. 293–327). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L. (2003). Memory orientation and success: Separable neurocognitive components underlying episodic recognition. Neuropsychologia, 41, 318–333.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.

    Article  PubMed  Google Scholar 

  • Egner, T., & Hirsch, J. (2005). Where memory meets attention: Neural substrates of negative priming. Journal of Cognitive Neuroscience, 17, 1774–1784.

    Article  PubMed  Google Scholar 

  • Frith, C., & Dolan, R. (1996). The role of the prefrontal cortex in higher cognitive functions. Cognitive Brain Research, 5, 175–181.

    Article  PubMed  Google Scholar 

  • Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17, 1820–1829.

    Article  PubMed  Google Scholar 

  • Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito, G., et al. (1998). Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study. NeuroImage, 7, 296–303.

    Article  PubMed  Google Scholar 

  • Haier, R. J., Siegel, B. V., Jr., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Research, 570, 134–143.

    Article  PubMed  Google Scholar 

  • Ingvar, D. H. (1994). The will of the brain: Cerebral correlates of willful acts. Journal of Theoretical Biology, 171, 7–12.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M. (2005). Capacity limitations in human cognition: Behavioural and biological contributions. Unpublished doctoral dissertation, University of Bern.

  • Jaeggi, S. M., Seewer, R., Nirkko, A. C., Eckstein, D., Schroth, G., Groner, R., & Gutbrod, K. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: Functional magnetic resonance imaging study. NeuroImage, 19, 210–225.

    Article  PubMed  Google Scholar 

  • Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitive Neuroscience, 13, 730–743.

    Article  PubMed  Google Scholar 

  • Jansma, J. M., Ramsey, N. F., van der Wee, N. J. A., & Kahn, R. S. (2004). Working memory capacity in schizophrenia: A parametric fMRI study. Schizophrenia Research, 68, 159–171.

    Article  PubMed  Google Scholar 

  • Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 3–28.

    Article  PubMed  Google Scholar 

  • Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139, 181–193.

    Article  PubMed  Google Scholar 

  • Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9, 462–475.

    Article  Google Scholar 

  • Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637–671.

    Article  Google Scholar 

  • Kassubek, J., Schmidtke, K., Kimmig, H., Lucking, C. H., & Greenlee, M. W. (2001). Changes in cortical activation during mirror reading before and after training: An fMRI study of procedural learning. Cognitive Brain Research, 10, 207–217.

    Article  PubMed  Google Scholar 

  • Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55, 352–358.

    Article  PubMed  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14, 389–433.

    Article  Google Scholar 

  • Li, S. C., & Lindenberger, U. (1999). Cross-level unification: A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In L. G. Nilsson & H. J. Markowitsch (Eds.), Cognitive neuroscience of memory (pp. 103–146). Seattle: Hogrefe & Huber.

    Google Scholar 

  • Linden, D. E., Bittner, R. A., Muckli, L., Waltz, J. A., Krieges-korte, N., Goebel, R., et al. (2003). Cortical capacity constraints for visual working memory: Dissociation of fMRI load effects in a fronto-parietal network. NeuroImage, 20, 1518–1530.

    Article  PubMed  Google Scholar 

  • Mitchell, K. J., Johnson, M. K., Raye, C. L., & Greene, E. J. (2004). Prefrontal cortex activity associated with source monitoring in a working memory task. Journal of Cognitive Neuroscience, 16, 921–934.

    Article  PubMed  Google Scholar 

  • Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H. C., & Keidel, M. (2005). On the neural basis of focused and divided attention. Cognitive Brain Research, 25, 760–776.

    Article  PubMed  Google Scholar 

  • Neubauer, A. C., Grabner, R. H., Fink, A., & Neuper, C. (2005). Intelligence and neural efficiency: Further evidence of the influence of task content and sex on the brain-IQ relationship. Cognitive Brain Research, 25, 217–225.

    Article  PubMed  Google Scholar 

  • Nirkko, A. C. (2000). A small software utility for fully automated download and evaluation of fMRI data. NeuroImage, 11, S919.

    Article  Google Scholar 

  • Nirkko, A. C., Ozdoba, C., Redmond, S. M., Burki, M., Schroth, G., Hess, C. W., & Wiesendanger, M. (2001). Different ipsilateral representations for distal and proximal movements in the sensorimotor cortex: Activation and deactivation patterns. NeuroImage, 13, 825–835.

    Article  PubMed  Google Scholar 

  • Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11, 424–446.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59.

    Article  PubMed  Google Scholar 

  • Perlstein, W. M., Carter, C. S., Noll, D. C., & Cohen, J. D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. American Journal of Psychiatry, 158, 1105–1113.

    Article  PubMed  Google Scholar 

  • Prince, S. E., Daselaar, S. M., & Cabeza, R. (2005). Neural correlates of relational memory: Successful encoding and retrieval of semantic and perceptual associations. Journal of Neuroscience, 25, 1203–1210.

    Article  PubMed  Google Scholar 

  • Qin, Y., Carter, C. S., Silk, E. M., Stenger, V. A., Fissell, K., Goode, A., & Anderson, J. R. (2004). The change of the brain activation patterns as children learn algebra equation solving. Proceedings of the National Academy of Sciences, 101, 5686–5691.

    Article  Google Scholar 

  • Rademacher, J., Galaburda, A. M., Kennedy, D. N., Filipek, P. A., & Caviness, V. S., Jr. (1992). Human cerebral cortex: Localization, parcellation, and morphometry with magnetic resonance imaging. Journal of Cognitive Neuroscience, 4, 352–374.

    Article  Google Scholar 

  • Ranganath, C., Johnson, M. K., & D’Esposito, M. (2000). Left anterior prefrontal activation increases with demands to recall specific perceptual information. Journal of Neuroscience, 20, RC108.

    PubMed  Google Scholar 

  • Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351–358.

    Article  PubMed  Google Scholar 

  • Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14, 721–731.

    Article  PubMed  Google Scholar 

  • Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Proceedings of the National Academy of Sciences, 96, 6558–6563.

    Article  Google Scholar 

  • Rypma, B., & D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3, 509–515.

    Article  PubMed  Google Scholar 

  • Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20, 185–195.

    Article  PubMed  Google Scholar 

  • Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., & Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system. NeuroImage, 3, 79–88.

    Article  PubMed  Google Scholar 

  • Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: Effects of performance and aging. Proceedings of the National Academy of Sciences, 98, 2095–2100.

    Article  Google Scholar 

  • Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34–50.

    Article  Google Scholar 

  • Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754.

    Article  PubMed  Google Scholar 

  • van der Graaf, F. H. C. E., de Jong, B. M., Maguire, R. P., Meiners, L. C., & Leenders, K. L. (2004). Cerebral activation related to skills practice in a double serial reaction time task: Striatal involvement in random-order sequence learning. Cognitive Brain Research, 20, 120–131.

    Article  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503.

    Article  PubMed  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3, 255–274.

    Article  Google Scholar 

  • Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: Processing and representational perspectives. Nature Reviews Neuroscience, 4, 139–147.

    Article  PubMed  Google Scholar 

  • Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, Division of Experimental Psychology and Neuropsychology, University of Bern, Muesmattstrasse 45, CH-3012, Bern, Switzerland

    Susanne M. Jaeggi, Martin Buschkuehl & Walter J. Perrig

  2. University of Neuchâtel, Neuchâtel, Switzerland

    Alex Etienne

  3. University Hospital of Bern, Bern, Switzerland

    Christoph Ozdoba & Arto C. Nirkko

Authors
  1. Susanne M. Jaeggi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Martin Buschkuehl
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alex Etienne
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Christoph Ozdoba
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Walter J. Perrig
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Arto C. Nirkko
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Susanne M. Jaeggi.

Additional information

This study was supported by the Swiss National Science Foundation (Grant 101211-101849) and the Bern University Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaeggi, S.M., Buschkuehl, M., Etienne, A. et al. On how high performers keep cool brains in situations of cognitive overload. Cognitive, Affective, & Behavioral Neuroscience 7, 75–89 (2007). https://doi.org/10.3758/CABN.7.2.75

Download citation

  • Received: 02 January 2006

  • Accepted: 21 September 2006

  • Issue Date: June 2007

  • DOI: https://doi.org/10.3758/CABN.7.2.75

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Blood Oxygenation Level Dependent
  • Dual Task
  • Inferior Frontal Gyrus
  • Blood Oxygenation Level Dependent Signal
  • Blood Oxygenation Level Dependent Response
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature