Interference resolution: Insights from a meta-analysis of neuroimaging tasks

  • Derek Evan Nee
  • Tor D. Wager
  • John Jonides


A quantitative meta-analysis was performed on 47 neuroimaging studies involving tasks purported to require the resolution of interference. The tasks included the Stroop, flanker, go/no-go, stimulus-response compatibility, Simon, and stop signal tasks. Peak density-based analyses of these combined tasks reveal that the anterior cingulate cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, posterior parietal cortex, and anterior insula may be important sites for the detection and/or resolution of interference. Individual task analyses reveal differential patterns of activation among the tasks. We propose that the drawing of distinctions among the processing stages at which interference may be resolved may explain regional activation differences. Our analyses suggest that resolution processes acting upon stimulus encoding, response selection, and response execution may recruit different neural regions.


Anterior Cingulate Cortex Response Selection Stroop Task Flanker Task Simon Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., & Reiss, A. L. (2002). A developmental fMRI study of the Stroop color-word task. NeuroImage, 16, 61–75.CrossRefPubMedGoogle Scholar
  2. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115–116.CrossRefPubMedGoogle Scholar
  3. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.CrossRefPubMedGoogle Scholar
  4. Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., et al. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12, 988–1000.CrossRefPubMedGoogle Scholar
  5. Banich, M. T., Milham, M. P., Jacobson, B. L., Webb, A., Wszalek, T., Cohen, N. J., & Kramer, A. F. (2001). Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research, 134, 459–470.CrossRefPubMedGoogle Scholar
  6. Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., & Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31, 907–922.CrossRefPubMedGoogle Scholar
  7. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.CrossRefPubMedGoogle Scholar
  8. Brass, M., Derrfuss, J., Forstmann, B., & von Cramon, D. Y. (2005). The role of the inferior frontal junction area in cognitive control. Trends in Cognitive Sciences, 9, 314–316.CrossRefPubMedGoogle Scholar
  9. Bunge, S. A., Hazeltine, E., Scanlon, M. D., Rosen, A. C., & Gabrieli, J. D. E. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. NeuroImage, 17, 1562–1571.CrossRefPubMedGoogle Scholar
  10. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.CrossRefPubMedGoogle Scholar
  11. Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An H215O PET study of Stroop task performance. NeuroImage, 2, 264–272.CrossRefPubMedGoogle Scholar
  12. Casey, B. J., Thomas, K. M., Davidson, M. C., Kunz, K., & Franzen, P. L. (2002). Dissociating striatal and hippocampal function developmentally with a stimulus-response compatibility task. Journal of Neuroscience, 22, 8647–8652.PubMedGoogle Scholar
  13. Dassonville, P., Lewis, S. M., Zhu, X. H., Ugurbil, K., Kim, S. G., & Ashe, J. (2001). The effect of stimulus-response compatibility on cortical motor activation. NeuroImage, 13, 1–14.CrossRefPubMedGoogle Scholar
  14. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806.CrossRefPubMedGoogle Scholar
  15. Derbyshire, S. W. G., Vogt, B. A., & Jones, A. K. P. (1998). Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Experimental Brain Research, 118, 52–60.CrossRefGoogle Scholar
  16. Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involvement of the inferior frontal junction in cognitive control: Metaanalyses of switching and Stroop studies. Human Brain Mapping, 25, 22–34.CrossRefPubMedGoogle Scholar
  17. de Zubicaray, G. I., Andrew, C., Zelaya, F. O., Williams, S. C. R., & Dumanoir, C. (2000). Motor response suppression and the prepotent tendency to respond: A parametric fMRI study. Neuropsychologia, 38, 1280–1291.CrossRefPubMedGoogle Scholar
  18. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.CrossRefPubMedGoogle Scholar
  19. Durston, S., Thomas, K. M., Worden, M. S., Yang, Y., & Casey, B. J. (2002). The effect of preceding context on inhibition: An event-related fMRI study. NeuroImage, 16, 449–453.CrossRefPubMedGoogle Scholar
  20. Durston, S., Thomas, K. M., Yang, Y., Uluĝ, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5, F9-F16.CrossRefGoogle Scholar
  21. Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge: Cambridge University Press.Google Scholar
  22. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.Google Scholar
  23. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18, 42–57.CrossRefPubMedGoogle Scholar
  24. Fox, P. T., Laird, A. R., & Lancaster, J. L. (2005). Coordinate-based voxel-wise meta-analysis: Dividends of spatial normalization. Report of a virtual workshop. Human Brain Mapping, 25, 1–5.CrossRefPubMedGoogle Scholar
  25. Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17, 1820–1829.CrossRefPubMedGoogle Scholar
  26. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences, 96, 8301–8306.CrossRefGoogle Scholar
  27. Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance. Interaction of theory and application (pp. 653–675). Cambridge, MA: MIT Press.Google Scholar
  28. Hazeltine, E., Poldrack, R., & Gabrieli, J. D. E. (2000). Neural activation during response competition. Journal of Cognitive Neuroscience, 12, 118–129.CrossRefPubMedGoogle Scholar
  29. Hester, R., Murphy, K., & Garavan, H. (2004). Beyond common resources: The cortical basis for resolving task interference. Neuro-Image, 23, 202–212.PubMedGoogle Scholar
  30. Iacoboni, M., Woods, R. P., & Mazziotta, J. C. (1996). Brain-behavior relationships: Evidence from practice effects in spatial stimulus-response compatibility. Journal of Neurophysiology, 76, 321–331.PubMedGoogle Scholar
  31. Iacoboni, M., Woods, R. P., & Mazziotta, J. C. (1998). Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. Brain, 121, 2135–2143.CrossRefPubMedGoogle Scholar
  32. Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., Cunningham, W. A., & Sanislow, C. A. (2005). Using fMRI to investigate a component process of reflection: Prefrontal correlates of refreshing a just-activated representation. Cognitive, Affective, & Behavioral Neuroscience, 5, 339–361.CrossRefGoogle Scholar
  33. Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139, 181–193.CrossRefPubMedGoogle Scholar
  34. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95, 8410–8413.CrossRefGoogle Scholar
  35. Kane, M. J., Bleckley, M. K., Conway, A. R., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169–183.CrossRefGoogle Scholar
  36. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70.CrossRefGoogle Scholar
  37. Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology, 37, 216–223.CrossRefPubMedGoogle Scholar
  38. Kim, S.-Y., Kim, M.-S., & Chun, M. M. (2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences, 102, 16524–16529.CrossRefGoogle Scholar
  39. Konishi, S., Nakajima, K., Uchida, I., Kikyo, H.,Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122, 981–991.CrossRefPubMedGoogle Scholar
  40. Konishi, S., Nakajima, K., Uchida, I., Sekihara, K., & Miyashita, Y. (1998). No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. European Journal of Neuroscience, 10, 1209–1213.CrossRefPubMedGoogle Scholar
  41. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility-a model and taxonomy. Psychological Review, 97, 253–270.CrossRefPubMedGoogle Scholar
  42. Kornblum, S., Stevens, G. T., Whipple, A., & Requin, J. (1999). The effects of irrelevant stimuli: 1. The time course of stimulus-stimulus and stimulus-response consistency effects with Stroop-like stimuli, Simon-like tasks, and their factorial combinations. Journal of Experimental Psychology: Human Perception & Performance, 25, 688–714.CrossRefGoogle Scholar
  43. Kramer, A. F., Humphrey, D. G., Larish, J. F., Logan, G. D., & Strayer, D. L. (1994). Aging and inhibition: Beyond a unitary view of inhibitory processing in attention. Psychology & Aging, 9, 491–512.CrossRefGoogle Scholar
  44. Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25, 6–21.CrossRefPubMedGoogle Scholar
  45. Leung, H.-C., Skudlarski, P., Gatenby, J. C., Peterson, B. S., & Gore, J. C. (2000). An event-related functional MRI study of the Stroop color word interference task. Cerebral Cortex, 10, 552–560.CrossRefPubMedGoogle Scholar
  46. Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fMRI study of response inhibition. Human Brain Mapping, 12, 100–109.CrossRefPubMedGoogle Scholar
  47. Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. NeuroImage, 22, 1097–1106.CrossRefPubMedGoogle Scholar
  48. Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2006). Functional dissociation of attentional selection within PFC: Response and non-response related aspects of attentional selection as ascertained by fMRI. Cerebral Cortex, 16, 827–834.CrossRefPubMedGoogle Scholar
  49. MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.CrossRefPubMedGoogle Scholar
  50. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.CrossRefPubMedGoogle Scholar
  51. MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., & Bibi, U. (2003). In opposition to inhibition. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 43, pp. 163–214). San Diego: Academic Press.Google Scholar
  52. Maclin, E. L., Gratton, G., & Fabiani, M. (2001). Visual spatial localization conflict: An fMRI study. NeuroReport, 12, 3633–3636.CrossRefPubMedGoogle Scholar
  53. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a go/nogo response inhibition task. Human Brain Mapping, 12, 131–143.CrossRefPubMedGoogle Scholar
  54. Milham, M. P., & Banich, M. T. (2005). Anterior cingulate cortex: An fMRI analysis of conflict specificity and functional differentiation. Human Brain Mapping, 25, 328–335.CrossRefPubMedGoogle Scholar
  55. Milham, M. P., Banich, M. T., & Barad, V. (2003). Competition for priority in processing increases prefrontal cortex’s involvement in topdown control: An event-related fMRI study of the Stroop task. Cognitive Brain Research, 17, 212–222.CrossRefPubMedGoogle Scholar
  56. Milham, M. P., Banich, M. T., Webb, A., Barad, V., Cohen, N. J., Wszalek, T., & Kramer, A. F. (2001). The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Cognitive Brain Research, 12, 467–473.CrossRefPubMedGoogle Scholar
  57. Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain & Cognition, 49, 277–296.CrossRefGoogle Scholar
  58. Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5, 218–228.CrossRefPubMedGoogle Scholar
  59. Nelson, J. K., Reuter-Lorenz, P. A., Sylvester, C. Y., Jonides, J., & Smith, E. E. (2003). Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proceedings of the National Academy of Sciences, 100, 11171–11175.CrossRefGoogle Scholar
  60. Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, 87, 256–259.CrossRefGoogle Scholar
  61. Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70, 453–469.PubMedGoogle Scholar
  62. Perlstein, W. M., Dixit, N. K., Carter, C. S., Noll, D. C., & Cohen, J. D. (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry, 53, 25–38.CrossRefPubMedGoogle Scholar
  63. Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H. C., et al. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13, 427–440.CrossRefPubMedGoogle Scholar
  64. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H. P., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45, 1237–1258.CrossRefPubMedGoogle Scholar
  65. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331–348.CrossRefPubMedGoogle Scholar
  66. Praamstra, P., Kleine, B. U., & Schnitzler, A. (1999). Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. NeuroReport, 10, 3671–3674.CrossRefPubMedGoogle Scholar
  67. Ravnkilde, B., Videbech, P., Rosenberg, R., Gjedde, A., & Gade, A. (2002). Putative tests of frontal lobe function: A PET-study of brain activation during Stroop’s test and verbal fluency. Journal of Clinical & Experimental Neuropsychology, 24, 534–547.CrossRefGoogle Scholar
  68. Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., et al. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage, 13, 250–261.CrossRefPubMedGoogle Scholar
  69. Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351–358.CrossRefPubMedGoogle Scholar
  70. Ruff, C. C., Woodward, T. S., Laurens, K. R., & Liddle, P. F. (2001). The role of the anterior cingulate cortex in conflict processing: Evidence from reverse Stroop interference. NeuroImage, 14, 1150–1158.CrossRefPubMedGoogle Scholar
  71. Schumacher, E. H., & D’Esposito, M. (2002). Neural implementation of response selection in humans as revealed by localized effects of stimulus-response compatibility on brain activation. Human Brain Mapping, 17, 193–201.CrossRefPubMedGoogle Scholar
  72. Shilling, V. M., Chetwynd, A., & Rabbitt, P. M. (2002). Individual inconsistency across measures of inhibition: An investigation of the construct validity of inhibition in older adults. Neuropsychologia, 40, 605–619.CrossRefPubMedGoogle Scholar
  73. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  74. Sylvester, C.-Y. C., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., & Jonides, J. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41, 357–370.CrossRefPubMedGoogle Scholar
  75. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system. An approach to cerebral imaging (M. Rayport, Trans.). Stuttgart: Thieme.Google Scholar
  76. Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 1231–1238.CrossRefGoogle Scholar
  77. Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., & Koeppe, R. A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies. NeuroImage, 6, 81–92.CrossRefPubMedGoogle Scholar
  78. Taylor, S. F., Kornblum, S., Minoshima, S., Oliver, L. M., & Koeppe, R. A. (1994). Changes in medial cortical blood flow with a stimulus-response compatibility task. Neuropsychologia, 32, 249–255.CrossRefPubMedGoogle Scholar
  79. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94, 14792–14797.CrossRefGoogle Scholar
  80. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16, 765–780.CrossRefPubMedGoogle Scholar
  81. Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage, 14, 1387–1401.CrossRefPubMedGoogle Scholar
  82. van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14, 1302–1308.CrossRefPubMedGoogle Scholar
  83. Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage, 22, 1679–1693.CrossRefPubMedGoogle Scholar
  84. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531.CrossRefPubMedGoogle Scholar
  85. Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3, 255–274.CrossRefGoogle Scholar
  86. Wager, T. D., Sylvester, C. Y., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27, 323–340.CrossRefPubMedGoogle Scholar
  87. Watanabe, J., Sugiura, M., Sato, K., Sato, Y., Maeda, Y., Matsue, Y., et al. (2002). The human prefrontal and parietal association cortices are involved in no-go performances: An event-related fMRI study. NeuroImage, 17, 1207–1216.CrossRefPubMedGoogle Scholar
  88. Zhang, H. H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of stimulus-stimulus and stimulus-response compatibility. Cognitive Psychology, 38, 386–432.CrossRefPubMedGoogle Scholar
  89. Zysset, S., Muller, K., Lohmann, G., & von Cramon, D. Y. (2001). Color-word matching Stroop task: Separating interference and response conflict. NeuroImage, 13, 29–36.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  • Derek Evan Nee
    • 1
  • Tor D. Wager
    • 2
  • John Jonides
    • 1
  1. 1.University of MichiganAnn ArborMichigan
  2. 2.Columbia UniversityNew YorkNew York

Personalised recommendations