Cognitive, Affective, & Behavioral Neuroscience

, Volume 5, Issue 3, pp 319–338 | Cite as

Effects of visual attentional load on low-level auditory scene analysis



The sharing of processing resources between the senses was investigated by examining the effects of visual task load on auditory event-related brain potentials (ERPs). In Experiment 1, participants completed both a zero-back and a one-back visual task while a tone pattern or a harmonic series was presented. N1 and P2 waves were modulated by visual task difficulty, but neither mismatch negativity (MMN) elicited by deviant stimuli from the tone pattern nor object-related negativity (ORN) elicited by mistuning from the harmonic series was affected. In Experiment 2, participants responded to identity (what) or location (where) in vision, while ignoring sounds alternating in either pitch (what) or location (where). Auditory ERP modulations were consistent with task difficulty, rather than with task specificity. In Experiment 3, we investigated auditory ERP generation under conditions of no visual task. The results are discussed with respect to a distinction between process-general (N1 and P2) and processspecific (MMN and ORN) auditory ERPs.


  1. Alain, C., Arnott, S. R., Hevenor, S., Graham, S., & Grady, C. L. (2001). “What” and “where” in the human auditory cortex. Proceedings of the National Academy of Sciences, 98, 12301–12306.CrossRefGoogle Scholar
  2. Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and topdown influences on auditory scene analysis: Evidence from eventrelated brain potentials. Journal of Experimental Psychology: Human Perception & Performance, 27, 1072–1089.CrossRefGoogle Scholar
  3. Alain, C., & Izenberg, A. (2003). Effects of attentional load on auditory scene analysis. Journal of Cognitive Neuroscience, 15, 1063–1073.PubMedCrossRefGoogle Scholar
  4. Alain, C., Schuler, B. M., & McDonald, K. L. (2002). Neural activity associated with distinguishing concurrent auditory objects. Journal of the Acoustical Society of America, 111, 990–995.PubMedCrossRefGoogle Scholar
  5. Alain, C., & Woods, D. L. (1997). Attention modulates auditory pattern memory as indexed by event-related brain potentials. Psychophysiology, 34, 534–546.PubMedCrossRefGoogle Scholar
  6. Alain, C., Woods, D. L., & Ogawa, K. H. (1994). Brain indices of automatic pattern processing. NeuroReport, 6, 140–144.PubMedCrossRefGoogle Scholar
  7. Alho, K., Sams, M., Paavilainen, P., Reinikainen, K., & Näätänen, R. (1989). Event-related brain potentials reflecting processing of relevant and irrelevant stimuli during selective attention. Psychophysiology, 26, 514–528.PubMedCrossRefGoogle Scholar
  8. Alho, K., Woods, D. L., & Algazi, A. (1994). Processing of auditory stimuli during auditory and visual attention as revealed by eventrelated potentials. Psychophysiology, 31, 469–479.PubMedCrossRefGoogle Scholar
  9. Alho, K., Woods, D. L., Algazi, A., & Näätänen, R. (1992). Intermodal selective attention: II. Effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalography & Clinical Neurophysiology, 82, 356–368.CrossRefGoogle Scholar
  10. Anourova, I., Nikouline, V. V., Ilmoniemi, R. J., Hotta, J., Aronen, H. J., & Carlson, S. (2001). Evidence for dissociation of spatial and nonspatial auditory information processing. NeuroImage, 14, 1268–1277.PubMedCrossRefGoogle Scholar
  11. Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–90). New York: Academic Press.Google Scholar
  12. Belin, P., & Zatorre, R. J. (2000). “What,” “where” and “how” in auditory cortex [Letter to the editor]. Nature Neuroscience, 3, 965–966.PubMedCrossRefGoogle Scholar
  13. Cacace, A. T., & McFarland, D. J. (2003). Quantifying signal-tonoise ratio of mismatch negativity in humans. Neuroscience Letters, 341, 251–255.PubMedCrossRefGoogle Scholar
  14. Clarke, S., Adriani, M., & Bellmann, A. (1998). Distinct short-term memory systems for sound content and sound localization. Neuro-Report, 9, 3433–3437.Google Scholar
  15. Deouell, L. Y., & Bentin, S. (1998). Variable cerebral responses to equally distinct deviance in four auditory dimensions: A mismatch negativity study. Psychophysiology, 35, 745–754.PubMedCrossRefGoogle Scholar
  16. Duncan, J., Martens, S., & Ward, R. (1997). Restricted attentional capacity within but not between sensory modalities. Nature, 387, 808–810.PubMedCrossRefGoogle Scholar
  17. Dyson, B. J., & Quinlan, P. T. (2004). Stimulus processing constraints in audition. Journal of Experimental Psychology: Human Perception & Performance, 30, 1117–1131.CrossRefGoogle Scholar
  18. Farrell, W. S., Jr. (1979). Coding left and right. Journal of Experimental Psychology: Human Perception & Performance, 5, 42–51.CrossRefGoogle Scholar
  19. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.PubMedCrossRefGoogle Scholar
  20. Hillyard, S. A., Hink, R., Schwent, V., & Picton, T. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.PubMedCrossRefGoogle Scholar
  21. Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  22. Kubovy, M. (1981). Concurrent-pitch segregation and the theory of indispensable attributes. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organization (pp. 55-98). Hillsdale, NJ: Erlbaum.Google Scholar
  23. Kubovy, M., & Van Valkenburg, D. (2001). Auditory and visual objects. Cognition, 80, 97–126.PubMedCrossRefGoogle Scholar
  24. McArthur, G. M., Bishop, D. V. M., & Proudfoot, M. (2003). Do video sounds interfere with auditory event-related potentials? Behavior Research Methods, Instruments, & Computers, 35, 329–333.CrossRefGoogle Scholar
  25. McDonald, J. J., Teder-Sälejärvi, W. A., Di Russo, F., & Hillyard, S. A. (2003). Neural substrates of perceptual enhancement by crossmodal spatial attention. Journal of Cognitive Neuroscience, 15, 10–19.PubMedCrossRefGoogle Scholar
  26. McDonald, J. J., & Ward, L. M. (2000). Involuntary listening aids seeing: Evidence from human electrophysiology. Psychological Science, 11, 167–171.PubMedCrossRefGoogle Scholar
  27. Meredith, M. A., & Stein, B. E. (1986). Visual, auditory and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56, 640–662.PubMedGoogle Scholar
  28. Müller, B. W., Achenback, C., Oades, R. D., Bender, S., & Schall, U. (2002). Modulation of mismatch negativity by stimulus deviance and modality of attention. NeuroReport, 13, 1317–1320.PubMedCrossRefGoogle Scholar
  29. Näätänen, R. (1975). Selective attention and evoked potentials in humans: A critical review. Biological Psychology, 2, 237–307.PubMedCrossRefGoogle Scholar
  30. Näätänen, R., & Picton, T. W. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24, 375–425.PubMedCrossRefGoogle Scholar
  31. Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Review, 125, 826–859.Google Scholar
  32. Neuhoff, J. G. (2003). Pitch variation is unnecessary (and sometimes insufficient) for the formation of auditory objects. Cognition, 87, 219–224.PubMedCrossRefGoogle Scholar
  33. Otten, L. J., Alain, C., & Picton, T. W. (2000). Effects of visual attentional load on auditory processing. NeuroReport, 11, 875–880.PubMedCrossRefGoogle Scholar
  34. Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: Different water in the same river. Audiology & Neuro-Otology, 5, 111–139.CrossRefGoogle Scholar
  35. Picton, T. W., van Roon, P., Armilio, M. L., Berg, P., Ille, N., & Scherg, M. (2000). The correction of ocular artifacts: A topographic perspective. Clinical Neurophysiology, 111, 53–65.PubMedCrossRefGoogle Scholar
  36. Pomerantz, J. R. (1983). Global and local precedence: Selective attention in form and motion perception. Journal of Experimental Psychology: General, 112, 515–540.CrossRefGoogle Scholar
  37. Ritter, W., Deacon, D., Gomes, H., Javitt, D. C., & Vaughan, H. G., Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review. Ear & Hearing, 16, 52–67.CrossRefGoogle Scholar
  38. Satterfield, J. H. (1965). Evoked cortical response enhancement and attention in man: A study of responses to auditory and shock stimuli. Electroencephalography & Clinical Neurophysiology, 19, 470–475.CrossRefGoogle Scholar
  39. Schröger, E. (1995). Processing of auditory deviants with changes in one versus two stimulus dimensions. Psychophysiology, 32, 55–65.PubMedCrossRefGoogle Scholar
  40. Schröger, E., & Wolff, C. (1997). Fast preattentive processing of location: A functional basis for selective listening in humans. Neuroscience Letters, 232, 5–8.PubMedCrossRefGoogle Scholar
  41. Spong, P., & Lindsley, D. B. (1968). Cortical evoked responses and attentiveness in man: Differential effects of selective attentiveness and general alertness level. Electroencephalography & Clinical Neurophysiology, 24, 396–397.Google Scholar
  42. Talsma, D., & Kok, A. (2001). Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potentials. Psychophysiology, 38, 736–751.PubMedCrossRefGoogle Scholar
  43. Tellinghuisen, D. J., & Nowak, E. J. (2003). The inability to ignore auditory distractors as a function of visual task perceptual load. Perception & Psychophysics, 65, 817–828.CrossRefGoogle Scholar
  44. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRefGoogle Scholar
  45. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  46. Valtonen, J., May, P., Mäkinen, V., & Tiitinen, H. (2003). Visual shortterm memory load affects sensory processing of irrelevant sounds in human auditory cortex. Cognitive Brain Research, 17, 358–367.PubMedCrossRefGoogle Scholar
  47. Van Valkenburg, D., & Kubovy, M. (2003). In defense of the theory of indispensable attributes. Cognition, 87, 225–233.PubMedCrossRefGoogle Scholar
  48. Winer, B. J. (1962). Statistical principles in experimental design. New York: McGraw-Hill.CrossRefGoogle Scholar
  49. Winkler, I., Sussman, E., Tervaniemi, M., Horváth, J., Ritter, W., & Näätänen, R. (2003). Preattentive auditory context effects. Cognitive, Affective, & Behavioral Neuroscience, 3, 57–77.CrossRefGoogle Scholar
  50. Woldorff, M. G., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28, 30–42.PubMedCrossRefGoogle Scholar
  51. Woods, D. L., Alain, C., Diaz, R., Rhodes, D., & Ogawa, K. H. (2001). Location and frequency cues in auditory selective attention. Journal of Experimental Psychology: Human Perception & Performance, 27, 65–74.CrossRefGoogle Scholar
  52. Woods, D. L., Alho, K., & Algazi, A. (1992). Intermodal selective attention: I. Effects on event-related potentials to lateralized auditory and visual stimuli. Electroencephalography & Clinical Neurophysiology, 82, 356–368.CrossRefGoogle Scholar
  53. Yucel, H. G., Petty, C., McCarthy, G., & Belger, A. (in press). Graded visual attention modulates brain responses evoked by taskirrelevant auditory pitch changes. Journal of Cognitive Neuroscience.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2005

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of SussexBrightonEngland
  2. 2.Rotman Research InstituteTorontoCanada
  3. 3.University of TorontoTorontoCanada
  4. 4.Rotman Research InstituteTorontoCanada

Personalised recommendations