Advertisement

Two types of image generation: Evidence from PET

  • Stephen M. KosslynEmail author
  • William L. Thompson
  • Katherine E. Sukel
  • Nathaniel M. Alpert
Article

Abstract

Is there more than one method whereby people can generate visual mental images? Participants generated images after learning patterns in two ways. In one condition, they memorized descriptions of how segments are arranged to form patterns; in another, they memorized segments and mentally amalgamated them into patterns. In both conditions, identical stimuli cued them to form images while brain activation was monitored using PET. Comparison of the two imagery conditions revealed different activation between hemispheres when images were formed after patterns were learned by mentally combining segments versus when images were formed from stored verbal descriptions. Thus, images can be generated in at least two ways. However, this laterality difference was subtle; the majority of brain areas were activated in common across conditions. This overall similarity is counter to what would be expected if image generation is simply perceptual exploration in the absence of appropriate stimuli, as is posited by perceptual activity theory.

Keywords

Frontal Lobe Verbal Condition Image Generation Montreal Neurological Institute Brodmann Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience, 9, 27–38.CrossRefGoogle Scholar
  2. Chabris, C. F., & Kosslyn, S. M. (1998). How do the cerebral hemispheres contribute to encoding spatial relations? Current Directions in Psychological Science, 7, 8–14.CrossRefGoogle Scholar
  3. Costin, D. (1988). MacLab: A Macintosh system for psychology labs. Behavior Research Methods, Instruments, & Computers, 20, 197–200.CrossRefGoogle Scholar
  4. Denis, M., & Cocude, M. (1992). Structural properties of visual images constructed from poorly or well-structured verbal descriptions. Memory & Cognition, 20, 497–506.CrossRefGoogle Scholar
  5. Farah, M. J. (1984). The neurological basis of mental imagery: A componential analysis. Cognition, 18, 245–272.PubMedCrossRefGoogle Scholar
  6. Farah, M. J. (1986). The laterality of mental image generation: A test with normal subjects. Neuropsychologia, 24, 541–551.PubMedCrossRefGoogle Scholar
  7. Fiez, J. A., & Petersen, S. E. (1995). Neuroimaging studies of word reading. Proceedings of the National Academy of Sciences, 95, 914–921.CrossRefGoogle Scholar
  8. Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J. (1991). Comparing functional (PET) images: The assessment of significant change. Journal of Cerebral Blood Flow & Metabolism, 11, 690–699.Google Scholar
  9. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189–210.CrossRefGoogle Scholar
  10. Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in Neurobiology, 13, 159–166.PubMedCrossRefGoogle Scholar
  11. Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., Herscovitch, P., Schapiro, M. B., & Rapoport, S. I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences, 88, 1621–1625.CrossRefGoogle Scholar
  12. Hellige, J. B., & Michimata, C. (1989). Categorization versus distance: Hemispheric differences for processing spatial information. Memory & Cognition, 17, 770–776.CrossRefGoogle Scholar
  13. Jager, G., & Postma, A. (2003). On the hemispheric specialization of categorical and coordinate spatial relations: A review of the current evidence. Neuropsychologia, 41, 504–515.PubMedCrossRefGoogle Scholar
  14. Jonides, J., & Smith, E. E. (1994). Working memory in humans: Neuropsychological evidence. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1009–1020). Cambridge, MA: MIT Press.Google Scholar
  15. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.PubMedCrossRefGoogle Scholar
  16. Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach. Psychological Review, 94, 148–175.PubMedCrossRefGoogle Scholar
  17. Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press.Google Scholar
  18. Kosslyn, S. M., Alpert, N. M., Thompson, W. L., Chabris, C. F., Rauch, S. L., & Anderson, A. K. (1994). Identifying objects seen from different viewpoints: A PET investigation. Brain, 117, 1055–1071.PubMedCrossRefGoogle Scholar
  19. Kosslyn, S. M., Brunn, J. L., Cave, K. R., & Wallach, R. W. (1984). Individual differences in visual imagery: A computational analysis. Cognition, 18, 195–243.PubMedCrossRefGoogle Scholar
  20. Kosslyn, S. M., Cave, C. B., Provost, D. A., & von Gierke, S. M. (1988). Sequential processes in image generation. Cognitive Psychology, 20, 319–343.PubMedCrossRefGoogle Scholar
  21. Kosslyn, S. M., Chabris, C. F., Marsolek, C. M., & Koenig, O. (1992). Categorical versus coordinate spatial representations: Computational analyses and computer simulations. Journal of Experimental Psychology: Human Perception & Performance, 18, 562–577.CrossRefGoogle Scholar
  22. Kosslyn, S. M., Holtzman, J. D., Farah, M. J., & Gazzaniga, M. S. (1985). A computational analysis of mental image generation: Evidence from functional dissociations in split-brain patients. Journal of Experimental Psychology: General, 114, 311–341.CrossRefGoogle Scholar
  23. Kosslyn, S. M., & Koenig, O. (1995). Wet mind: The new cognitive neuroscience (2nd ed). New York: Free Press.Google Scholar
  24. Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. (1989). Evidence for two types of spatial representations: Hemispheric specialization for categorical and coordinate relations. Journal of Experimental Psychology: Human Perception & Performance, 15, 723–735.CrossRefGoogle Scholar
  25. Kosslyn, S. M., Maljkovic, V., Hamilton, S. E., Horwitz, G., & Thompson, W. L. (1995). Two types of image generation: Evidence for left and right hemisphere processes. Neuropsychologia, 33, 1485–1510.PubMedCrossRefGoogle Scholar
  26. Kosslyn, S. M., & Thompson, W. L. (2003). When is early visual cortex activated by visual mental imagery? Psychological Bulletin, 129, 723–746.PubMedCrossRefGoogle Scholar
  27. Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1995). Identifying objects at different levels of hierarchy: A positron emission tomography study. Human Brain Mapping, 3, 107–132.CrossRefGoogle Scholar
  28. Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6, 320–334.PubMedCrossRefGoogle Scholar
  29. Kosslyn, S. M., Thompson, W. L., Gitelman, D. R., & Alpert, N. M. (1998). Neural systems that encode categorical versus coordinate spatial relations: PET investigations. Psychobiology, 26, 333–347.Google Scholar
  30. Kosslyn, S. M., Thompson, W. L., Shephard, J. M., Ganis, G., Bell, D., Danovitch, J., Wittenberg, L. A., & Alpert, N. M. (2004). Brain rCBF and performance in visual imagery tasks: Common and distinct processes. European Journal of Cognitive Psychology, 16, 696–716.CrossRefGoogle Scholar
  31. Kosslyn, S. M., Thompson, W. L., Wraga, M., & Alpert, N. M. (2001). Imagining rotation by endogenous versus exogenous forces: Distinct neural mechanisms. NeuroReport, 12, 2519–2525.PubMedCrossRefGoogle Scholar
  32. Laeng, B. (1994). Lateralization of categorical and coordinate spatial functions: A study of unilateral stroke patients. Journal of Cognitive Neuroscience, 6, 189–203.CrossRefGoogle Scholar
  33. Laeng, B., Chabris, C. F., & Kosslyn, S. M. (2002). Asymmetries in encoding spatial relations. In K. Hugdahl & R. Davidson (Eds.), Brain asymmetry (2nd ed., pp. 303–339). Cambridge, MA: MIT Press.Google Scholar
  34. Laeng, B., & Teodorescu, D.-S. (2002). Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26, 207–231.CrossRefGoogle Scholar
  35. Ley, R. G. (1979). Cerebral asymmetries, emotional experience, and imagery: Implications for psychotherapy. In A. A. Sheikh & J. T. Shaffer (Eds.), The potential of fantasy and imagination (pp. 41–65). New York: Brandon House.Google Scholar
  36. Levine, D. N. (1982). Visual agnosia in monkey and man. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 629–670). Cambridge, MA: MIT Press.Google Scholar
  37. Marinkovic, K. (2004). Spatiotemporal dynamics of word processing in the human cortex. Neuroscientist, 10, 142–152.PubMedCrossRefGoogle Scholar
  38. McDermott, K. B., Petersen, S. E., Watson, J. M., & Ojemann, J. G. (2003). A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia, 41, 293–303.PubMedCrossRefGoogle Scholar
  39. Mellet, E., Bricogne, S., Crivello, F., Mazoyer, B., Denis, M., & Tzourio-Mazoyer, N. (2002). Neural basis of mental scanning of a topographic representation built from a text. Cerebral Cortex, 12, 1322–1330.PubMedCrossRefGoogle Scholar
  40. Mellet, E., Tzourio, N., Crivello, F., Joliot, M., Denis, M., & Mazoyer, B. (1996). Functional anatomy of spatial mental imagery generated from verbal instructions. Journal of Neuroscience, 16, 6504–6512.PubMedGoogle Scholar
  41. Mellet, E., Tzourio, N., Denis, M., & Mazoyer, B. (1995). A positron emission tomography study of visual and mental spatial exploration. Journal of Cognitive Neuroscience, 7, 433–445.CrossRefGoogle Scholar
  42. Mesulam, M.-M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309–325.PubMedCrossRefGoogle Scholar
  43. O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–488.PubMedCrossRefGoogle Scholar
  44. O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral & Brain Sciences, 24, 939–1031.CrossRefGoogle Scholar
  45. Ploner, C. J., Gaymard, B. M., Rivaud-Pechoux, S., Baulac, M., Clemenceau, S., Samson, S., & Pierrot-Deseilligny, C. (2000). Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. Cerebral Cortex, 10, 1211–1216.PubMedCrossRefGoogle Scholar
  46. Podgorny, P., & Shepard, R. N. (1978). Functional representations common to visual perception and imagination. Journal of Experimental Psychology: Human Perception & Performance, 4, 21–35.CrossRefGoogle Scholar
  47. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.PubMedCrossRefGoogle Scholar
  48. Rota Kops, E., Herzog, H., Schmid, A., Holte, S., & Feinendegen, L. E. (1990). Performance characteristics of an eight-ring whole body PET scanner. Journal of Computer Assisted Tomography, 14, 437–445.PubMedCrossRefGoogle Scholar
  49. Sergent, J. (1989). Image generation and processing of generated images in the cerebral hemispheres. Journal of Experimental Psychology: Human Perception & Performance, 15, 170–178.CrossRefGoogle Scholar
  50. Sergent, J. (1990). The neuropsychology of visual image generation: Data, method, and theory. Brain & Cognition, 13, 98–129.CrossRefGoogle Scholar
  51. Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain, 115, 15–36.PubMedCrossRefGoogle Scholar
  52. Sergent, J., Zuck, E., Levesque, M., & MacDonald, B. (1992). Positron emission tomography study of letter and object processing: Empirical findings and methodological considerations. Cerebral Cortex, 2, 68–80.PubMedCrossRefGoogle Scholar
  53. Slotnick, S. D., Moo, L. R., Tesoro, M. A., & Hart, J. (2001). Hemispheric asymmetry in categorical versus coordinate visuospatial processing revealed by temporary cortical deactivation. Journal of Cognitive Neuroscience, 13, 1088–1096.PubMedCrossRefGoogle Scholar
  54. Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences, 95, 12061–12068.CrossRefGoogle Scholar
  55. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedCrossRefGoogle Scholar
  56. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain (M. Rayport, Trans.). New York: Thieme.Google Scholar
  57. Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.PubMedGoogle Scholar
  58. Thomas, N. J. T. (1999). Are theories of imagery theories of imagination? An active perception approach to conscious mental content. Cognitive Science, 23, 207–245.CrossRefGoogle Scholar
  59. Thomas, N. J. T. (2002). The false dichotomy of imagery. Behavioral & Brain Sciences, 25, 211.Google Scholar
  60. Thompson, W. L., Kosslyn, S. M., Sukel, K. E., & Alpert, N. M. (2001). Mental imagery of high- and low-resolution gratings activates area 17. NeuroImage, 14, 454–464.PubMedCrossRefGoogle Scholar
  61. Tippett, L. (1992). The generation of visual images: A review of neuropsychological research and theory. Psychological Bulletin, 112, 415–432.PubMedCrossRefGoogle Scholar
  62. Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences, 91, 2016–2020.CrossRefGoogle Scholar
  63. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16, 765–780.PubMedCrossRefGoogle Scholar
  64. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  65. Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A threedimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow & Metabolism, 12, 900–918.Google Scholar
  66. Wraga, M., Thompson, W. L., Alpert, N. M., & Kosslyn, S. M. (2003). Implicit transfer of motor strategies in mental rotation. Brain & Cognition, 52, 135–143.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2005

Authors and Affiliations

  • Stephen M. Kosslyn
    • 2
    • 1
    Email author
  • William L. Thompson
    • 2
  • Katherine E. Sukel
    • 2
  • Nathaniel M. Alpert
    • 2
  1. 1.Massachusetts General HospitalBoston
  2. 2.Department of PsychologyHarvard UniversityCambridge

Personalised recommendations