Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
  1. Home
  2. Cognitive, Affective, & Behavioral Neuroscience
  3. Article
Attention and cognitive control as emergent properties of information representation in working memory
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Allocation of resources in working memory: Theoretical and empirical implications for visual search

17 March 2021

Stanislas Huynh Cong & Dirk Kerzel

The diachronic account of attentional selectivity

16 December 2021

Alon Zivony & Martin Eimer

Do we understand the prefrontal cortex?

08 November 2022

Richard E. Passingham & Hakwan Lau

Memory & Cognition: The first 40 years

02 October 2020

Colin M. MacLeod

Working memory is supported by learning to represent items as actions

01 March 2023

Aaron Cochrane & C. Shawn Green

Working memory is not a natural kind and cannot explain central cognition

28 August 2020

Javier Gomez-Lavin

No one knows what attention is

05 September 2019

Bernhard Hommel, Craig S. Chapman, … Timothy N. Welsh

When the mind’s eye prevails: The Internal Dominance over External Attention (IDEA) hypothesis

29 March 2023

Sam Verschooren & Tobias Egner

Attention: a descriptive taxonomy

15 November 2022

Antonios Kaldas

Download PDF
  • Published: December 2004

Attention and cognitive control as emergent properties of information representation in working memory

  • Susan M. Courtney1 

Cognitive, Affective, & Behavioral Neuroscience volume 4, pages 501–516 (2004)Cite this article

  • 1824 Accesses

  • 134 Citations

  • Metrics details

Abstract

A hallmark of primate, and particularly human, behavior is cognitive control, the ability to integrate information from a multitude of sources and use that information to flexibly guide behavior in order to achieve an infinite number of goals. The neural mechanisms of cognitive control have yet to be fully elucidated, although the prefrontal cortex is known to play a critical role. Here, I review evidence suggesting that a unifying principle regarding the role of various portions of the prefrontal cortex in a wide range of cognitive tasks is the active maintenance in working memory of different types of currently relevant information—from specific stimulus features, to instructional cues, to motivational goals and contexts. I argue that the key to demonstrating the existence of this domain-dependent organization lies in a better understanding of the nature of the representation of this information and the ways in which this information itself controls cognition and behavior.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Alain, C., Arnott, S. R., Hevenor, S., Graham, S., & Grady, C. L. (2001). “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences, 98, 12301–12306.

    Google Scholar 

  • Ando, J., Ono, Y., & Wright, M. J. (2001). Genetic structure of spatial and verbal working memory. Behavior Genetics, 31, 615–624.

    PubMed  Google Scholar 

  • Arnott, S. R., Binns, M. A., Grady, C. L., & Alain, C. (2004). Assessing the auditory dual-pathway model in humans. NeuroImage, 22, 401–408.

    PubMed  Google Scholar 

  • Arnott, S. R., Grady, C. L., Hevenor, S. J., Graham, S., & Alain, C. (in press). The functional organization of auditory working memory as revealed by fMRI. Journal of Cognitive Neuroscience.

  • Asaad, W. F., Rainer, G., & Miller, E. K. (1998). Neural activity in the primate prefrontal cortex during associative learning. Neuron, 21, 1399–1407.

    PubMed  Google Scholar 

  • Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception & Performance, 24, 780–790.

    Google Scholar 

  • Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7, 25–31.

    Google Scholar 

  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. Bower (Ed.), The psychology of learning and motivation (pp. 47–90). San Diego: Academic Press.

    Google Scholar 

  • Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiplecomponent model. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). Cambridge: Cambridge University Press.

    Google Scholar 

  • Baker, S. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Active representation of shape and spatial location in man. Cerebral Cortex, 6, 612–619.

    PubMed  Google Scholar 

  • Barbas, H., & Pandya, D. N. (1989). Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 286, 353–375.

    PubMed  Google Scholar 

  • Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayedresponse deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative & Physiological Psychology, 90, 293–302.

    Google Scholar 

  • Beauchamp, M. S., Petit, L., Ellmore, T. M., Ingeholm, J., & Haxby, J. V. (2001). A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage, 14, 310–321.

    PubMed  Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428–437.

    PubMed  Google Scholar 

  • Belger, A., Puce, A., Krystal, J. H., Gore, J. C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping, 6, 14–32.

    PubMed  Google Scholar 

  • Bisley, J.W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299, 81–86.

    PubMed  Google Scholar 

  • Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron, 37, 361–367.

    PubMed  Google Scholar 

  • Brass, M., & von Cramon, D. Y. (2004). Selection for cognitive control: A functional magnetic resonance imaging study on the selection of task-relevant information. Journal of Neuroscience, 24, 8847–8852.

    PubMed  Google Scholar 

  • Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes (pp. 713–737). Cambridge, MA: MIT Press.

    Google Scholar 

  • Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713–726.

    PubMed  Google Scholar 

  • Carlesimo, G. A., Perri, R., Turriziani, P., Tomaiuolo, F., & Caltagirone, C. (2001). Remembering what but not where: Independence of spatial and visual working memory in the human brain. Cortex, 37, 519–534.

    PubMed  Google Scholar 

  • Carlson, S., Martinkauppi, S., Rämä, P., Salli, E., Korvenoja, A., & Aronen, H. J. (1998). Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cortex, 8, 743–752.

    Google Scholar 

  • Cavada, C., & Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. Journal of Comparative Neurology, 287, 422–445.

    PubMed  Google Scholar 

  • Claeys, K. G., Dupont, P., Cornette, L., Sunaert, S., van Hecke, P., De Schutter, E., & Orban, G. A. (2004). Color discrimination involves ventral and dorsal stream visual areas. Cerebral Cortex, 14, 803–822.

    PubMed  Google Scholar 

  • Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.

    PubMed  Google Scholar 

  • Constantinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001a). Coding specificity in cortical microcircuits: A multipleelectrode analysis of primate prefrontal cortex. Journal of Neuroscience, 21, 3646–3655.

    PubMed  Google Scholar 

  • Constantinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001b). The sensory nature of mnemonic representation in the primate prefrontal cortex. Nature Neuroscience, 4, 311–316.

    PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.

    PubMed  Google Scholar 

  • Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347–1351.

    PubMed  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6, 39–49.

    PubMed  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.

    PubMed  Google Scholar 

  • Creem, S. H., & Proffitt, D. R. (2001). Defining the cortical visual systems: “What,” “where,” and “how.” Acta Psychologica, 107, 43–68.

    PubMed  Google Scholar 

  • Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Science, 7, 415–423.

    Google Scholar 

  • Deneve, S., & Pouget, A. (2003). Basis functions for object-centered representations. Neuron, 37, 347–359.

    PubMed  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    PubMed  Google Scholar 

  • D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.

    PubMed  Google Scholar 

  • D’Esposito, M., Postle, B. R., Ballard, D., & Lease J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain & Cognition, 41, 66–86.

    Google Scholar 

  • D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research, 133, 3–11.

    Google Scholar 

  • Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11, 467–473.

    PubMed  Google Scholar 

  • Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820–829.

    PubMed  Google Scholar 

  • Duncan, J., Humphreys, G., & Ward, R. (1997).Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7, 255–261.

    PubMed  Google Scholar 

  • Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 41–50.

    PubMed  Google Scholar 

  • Fiez, J. A., Raife, E. A., Balota, D. A., Schwarz, J. P., Raichle, M. E., & Petersen, S. E. (1996). A positron emission tomography study of the short-term maintenance of verbal information. Journal of Neuroscience, 16, 808–822.

    PubMed  Google Scholar 

  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). A comparison of primate prefrontal and inferior temporal cortices during visual categorization. Journal of Neuroscience, 23, 5235–5246.

    PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.

    PubMed  Google Scholar 

  • Fuster, J. M. (2001). The prefrontal cortex-an update: Time is of the essence. Neuron, 30, 319–333.

    PubMed  Google Scholar 

  • Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173, 652–654.

    PubMed  Google Scholar 

  • Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Research, 330, 299–307.

    PubMed  Google Scholar 

  • Fuster, J. M., Bodner, M., & Kroger, J. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex. Nature, 405, 347–351.

    PubMed  Google Scholar 

  • Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of “theory of mind.” Trends in Cognitive Sciences, 7, 77–83.

    PubMed  Google Scholar 

  • Glahn, D. C., Kim, J., Cohen, M. S., Poutanen, V. P., Therman, S., Bava, S., Van Erp, T. G., Manninen, M., Huttunen, M., Lonnqvist, J., Standertskjold-Nordenstam, C. G., & Cannon, T. D. (2002). Maintenance and manipulation in spatial working memory: Dissociations in the prefrontal cortex. NeuroImage, 17, 201–213.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. [S.] (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In J. M. Brookhart & V. B. Mountcastle (Series Eds.) & F. Plum (Vol. Ed.), Handbook of physiology: Section 1. The nervous system: Vol. 5. Higher functions of the brain (pp. 373–417). Washington, DC: American Physiological Society.

    Google Scholar 

  • Goldman-Rakic, P. S. (1995a). Architecture of the prefrontal cortex and the central executive. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and function of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 71–83). New York: New York Academy of Sciences.

    Google Scholar 

  • Goldman-Rakic, P. S. (1995b). Cellular basis of working memory. Neuron, 14, 477–485.

    PubMed  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.

    PubMed  Google Scholar 

  • Gruber, O., & von Cramon, D.Y. (2003). The functional neuroanatomy of human working memory revisited: Evidence from 3-T fMRI studies using classical domain-specific interference tasks. NeuroImage, 19, 797–809.

    PubMed  Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685–694.

    PubMed  Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.

    PubMed  Google Scholar 

  • Hoshi, E., Shima, K., & Tanji, J. (1998). Task-dependent selectivity of movement related neuronal activity in the primate prefrontal cortex. Journal of Neurophysiology, 80, 3392–3397.

    PubMed  Google Scholar 

  • Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 683–702.

    Google Scholar 

  • Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., & Anderson, A. W. (2003). fMRI evidence for an organization of prefrontal cortex by both type of process and type of information. Cerebral Cortex, 13, 265–273.

    PubMed  Google Scholar 

  • Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9, 462–475.

    Google Scholar 

  • Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.

    PubMed  Google Scholar 

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185.

    PubMed  Google Scholar 

  • Kubota, K., & Niki, H. (1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys. Journal of Neurophysiology, 34, 337–347.

    PubMed  Google Scholar 

  • Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within the dorsolateral prefrontal cortex. Experimental Brain Research, 133, 23–32.

    Google Scholar 

  • Liu, T., Slotnick, S. D., Serences, J. T., & Yantis, S. (2003). Cortical mechanisms of feature-based attentional control. Cerebral Cortex, 13, 1334–1343.

    PubMed  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.

    PubMed  Google Scholar 

  • Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379, 649–652.

    PubMed  Google Scholar 

  • Maviel, T., Durkin, T. P., Menzaghi, F., & Bontempi, B. (2004). Sites of neocortical reorganization critical for remote spatial memory. Science, 305, 96–99.

    PubMed  Google Scholar 

  • McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., & Goldman-Rakic, P. S. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cerebral Cortex, 6, 600–611.

    PubMed  Google Scholar 

  • Mecklinger, A., Gruenewald, C., Besson, M., Magnié, M.-N., & von Cramon, D. Y. (2002). Separable neuronal circuitries for manipulable and non-manipulable objects in working memory. Cerebral Cortex, 12, 1115–1123.

    PubMed  Google Scholar 

  • Mellet, E., Tzourio, N., Crivello, F., Joliot, M., Denis, M., & Mazoyer, B. (1996). Functional anatomy of spatial mental imagery generated from verbal instructions. Journal of Neuroscience, 16, 6504–6512.

    PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    PubMed  Google Scholar 

  • Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16, 5154–5167.

    PubMed  Google Scholar 

  • Mishkin, M., & Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain Research, 143, 313–323.

    PubMed  Google Scholar 

  • Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J., & Pascual-Leone, A. (2002). Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cerebral Cortex, 12, 369–375.

    PubMed  Google Scholar 

  • Munk, M. H. J., Linden, D. E. J., Muckli, L., Lanfermann, H., Zanella, F. E., Singer, W., & Goebel, R. (2002). Distributed cortical systems in visual short-term memory revealed by event-related functional magnetic resonance imaging. Cerebral Cortex, 12, 866–876.

    PubMed  Google Scholar 

  • Murray, E. A., Bussey, T. J., & Wise, S. P. (2000). Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Experimental Brain Research, 133, 114–129.

    Google Scholar 

  • Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11, 424–446.

    PubMed  Google Scholar 

  • O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587.

    PubMed  Google Scholar 

  • Ohbayashi, M., Ohki, K., & Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science, 301, 233–236.

    PubMed  Google Scholar 

  • Oliver, R. T., & Thompson-Schill, S. L. (2003). Dorsal stream activation during retrieval of object size and shape. Cognitive, Affective, & Behavioral Neuroscience, 3, 309–322.

    Google Scholar 

  • Olson, C. R., (2003). Brain representation of object-centered space in monkeys and humans. Annual Review of Neuroscience, 26, 331–354.

    PubMed  Google Scholar 

  • O’Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D. (2002). Prefrontal cortex and dynamic categorization tasks: Representational organization and neuromodulatory control. Cerebral Cortex, 12, 246–257.

    PubMed  Google Scholar 

  • Ó Scalaidhe, S. P., Wilson, F. A., & Goldman-Rakic, P. S. (1997). Areal segregation of face-processing neurons in prefrontal cortex. Science, 278, 1135–1138.

    PubMed  Google Scholar 

  • Ó Scalaidhe, S. P., Wilson, F. A., & Goldman-Rakic, P. S. (1999). Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: Evidence for intrinsic specialization of neuronal coding. Cerebral Cortex, 9, 459–475.

    Google Scholar 

  • Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6, 31–38.

    PubMed  Google Scholar 

  • Owen, A. M., Milner, B., Petrides, M., & Evans, A. C. (1996). Memory for object features versus memory for object location: A positronemission tomography study of encoding and retrieval processes. Proceedings of the National Academy of Sciences, 93, 9212–9217.

    Google Scholar 

  • Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95, 7721–7726.

    Google Scholar 

  • Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–343.

    PubMed  Google Scholar 

  • Petit, L., Orssaud, C., Tzourio, N., Crivello, F., Berthoz, A., & Mazoyer, B. (1996). Functional anatomy of a prelearned sequence of horizontal saccades in humans. Journal of Neuroscience, 16, 3714–3726.

    PubMed  Google Scholar 

  • Petrides, M. (1995a). Functional organization of the human frontal cortex for mnemonic processing: Evidence from neuroimaging studies. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and function of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 85–96). New York: New York Academy of Sciences.

    Google Scholar 

  • Petrides, M. (1995b). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the middorsal part of the lateral frontal cortex in the monkey. Journal of Neuroscience, 15, 359–375.

    PubMed  Google Scholar 

  • Petrides, M., Alivisatos, B., & Frey, S. (2002). Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proceedings of the National Academy of Sciences, 99, 5649–5654.

    Google Scholar 

  • Petrides, M., & Pandya, D. N. (2002). Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. European Journal of Neuroscience, 16, 291–310.

    PubMed  Google Scholar 

  • Pollmann, S., & von Cramon, D. Y. (2000). Object working memory and visuospatial processing: Functional neuroanatomy analyzed by event-related fMRI. Experimental Brain Research, 133, 12–22.

    Google Scholar 

  • Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., & Mishkin, M. (2003). Functional mapping of the primate auditory system. Science, 299, 568–572.

    PubMed  Google Scholar 

  • Postle, B. R., & D’Esposito, M. (1999). “What”-then-“where” in visual working memory: An event-related fMRI study. Journal of Cognitive Neuroscience, 11, 585–597.

    PubMed  Google Scholar 

  • Postle, B. R., Stern, C. E., Rosen, B. R., & Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. NeuroImage, 11, 409–423.

    PubMed  Google Scholar 

  • Postle, B. R., Zarahn, E., & D’Esposito, M. (2000). Using eventrelated fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks. Brain Research Protocols, 5, 57–66.

    PubMed  Google Scholar 

  • Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3, 85–90.

    PubMed  Google Scholar 

  • Quintana, J., Yajeya, J., & Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks: I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Research, 474, 211–221.

    PubMed  Google Scholar 

  • Rainer, G., Asaad, W. F., & Miller, E. K. (1998a). Memory fields of neurons in the primate prefrontal cortex. Proceedings of the National Academy of Sciences, 95, 15008–15013.

    Google Scholar 

  • Rainer, G., Asaad, W. F., & Miller, E.K. (1998b). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.

    PubMed  Google Scholar 

  • Rajkowska, G., & Goldman-Rakic, P. S. (1995). Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach coordinate system. Cerebral Cortex, 5, 323–337.

    PubMed  Google Scholar 

  • Rämä, P., & Courtney, S. M. (2005). Functional topography of working memory for face or voice identity. NeuroImage, 24, 224–234.

    PubMed  Google Scholar 

  • Rämä, P., Poremba, A., Yee, L., Malloy, M., Mishkin, M., & Courtney, S. M. (2004). Dissociable functional cortical topographies for working memory maintenance of voice identity and location. Cerebral Cortex, 14, 768–780.

    PubMed  Google Scholar 

  • Rämä, P., Sala, J. B., Gillen, J. S., Pekar, J. J., & Courtney, S. M. (2001). Dissociation of the neural systems for working memory maintenance of verbal and nonspatial visual information. Cognitive, Affective, & Behavioral Neuroscience, 1, 161–171.

    Google Scholar 

  • Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184–194.

    PubMed  Google Scholar 

  • Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.

    PubMed  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences, 97, 11800–11806.

    Google Scholar 

  • Robbins, T. W. (2000). Chemical neuromodulation of frontal-executive functions in humans and other animals. Experimental Brain Research, 133, 130–138.

    Google Scholar 

  • Robertson, L., Treisman, A., Friedman-Hill, S., & Grabowecky, M. (1997). The interaction of spatial and object pathways: Evidence from Balint’s syndrome. Journal of Cognitive Neuroscience, 9, 295–317.

    Google Scholar 

  • Roe, K., Debruin, D., Roth, J. K., & Courtney, S. M. (2003). Dorsal / ventral dissociation for nonspatial visual versus verbal working memory (CD-ROM, Program No. 343.3, Abstracts viewer/itinerary planner). Washington, DC: Society for Neuroscience.

    Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 12, 1131–1136.

    Google Scholar 

  • Roth, J. K., Serences, J., & Courtney, S. M. (2004). Role of parietal and frontal cortices in updating and refreshing the contents of working memory. NeuroImage, 22, S69.

    Google Scholar 

  • Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., & Passingham, R. E. (2000). The prefrontal cortex: Response selection or maintenance within working memory? Science, 288, 1656–1660.

    PubMed  Google Scholar 

  • Rushworth, M. F., Nixon, P. D., Eacott, M. J., & Passingham, R. E. (1997). Ventral prefrontal cortex is not essential for working memory. Journal of Neuroscience, 17, 4829–4838.

    PubMed  Google Scholar 

  • Sakai, K., & Passingham, R. E. (2003). Prefrontal interactions reflect future task operations. Nature Neuroscience, 6, 75–81.

    PubMed  Google Scholar 

  • Sakai, K., Rowe, J. B., & Passingham, R. E. (2002). Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nature Neuroscience, 5, 479–484.

    PubMed  Google Scholar 

  • Sala, J. B. (2003). Active maintenance and the binding of information during working memory. Unpublished doctoral dissertation, Johns Hopkins University, Baltimore.

    Google Scholar 

  • Sala, J. B., Rämä, P., & Courtney, S. M. (2003). Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory. Neuropsychologia, 41, 341–356.

    PubMed  Google Scholar 

  • Sayala, S., Sala, J. B., & Courtney, S. M. (2004). Domain-specific and domain-general changes in fMRI activation during repeated performance of working memory tasks. NeuroImage, 22, S50.

    Google Scholar 

  • Schmitz, T. W., Kawahara-Baccus, T. N., & Johnson, S. C. (2004). Metacognitive evaluation, self-relevance, and the right prefrontal cortex. NeuroImage, 22, 941–947.

    PubMed  Google Scholar 

  • Schoenfeld, M. A., Tempelmann, C., Martinez, A., Hopf, J. M., Sattler, C., Heinze, H. J., & Hillyard, S. A. (2003). Dynamics of feature binding during object-selective attention. Proceedings of the National Academy of Sciences, 100, 11806–11811.

    Google Scholar 

  • Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., & Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cortex, 14, 1346–1357.

    PubMed  Google Scholar 

  • Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E., & Yantis, S. (in press). Coordination of voluntary and stimulusdriven attentional control in human cortex. Psychological Science.

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    PubMed  Google Scholar 

  • Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6, 11–20.

    PubMed  Google Scholar 

  • Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus object working memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337–356.

    Google Scholar 

  • Stark, C. E., & Squire, L. R. (2001). When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proceedings of the National Academy of Sciences, 98, 12760–12766.

    Google Scholar 

  • Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging. Neuro-Image, 11, 392–399.

    PubMed  Google Scholar 

  • Stoet, G., & Snyder, L. H. (2004). Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron, 42, 1003–1012.

    PubMed  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4, 157–165.

    PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2001). Functional specificity of superior parietal mediation of spatial shifting. NeuroImage, 14, 661–673.

    PubMed  Google Scholar 

  • Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in the prefrontal cortex encode abstract rules. Nature, 411, 953–956.

    PubMed  Google Scholar 

  • Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64.

    Google Scholar 

  • White, I. M., & Wise, S. P. (1999). Rule-dependent neuronal activity in the prefrontal cortex. Experimental Brain Research, 126, 315–335.

    Google Scholar 

  • Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376, 572–575.

    PubMed  Google Scholar 

  • Williams, G. V., Rao, S. G., & Goldman-Rakic, P. S. (2002). The physiological role of 5-HT2A receptors in working memory. Journal of Neuroscience, 22, 2843–2854.

    PubMed  Google Scholar 

  • Wilson, F. A., Ó Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.

    PubMed  Google Scholar 

  • Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23, 747–764.

    PubMed  Google Scholar 

  • Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: processing and representational perspectives. Nature Reviews Neuroscience, 4, 139–147.

    PubMed  Google Scholar 

  • Yajeya, J., Quintana, J., & Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks: II. The role of behavioral significance. Brain Research, 474, 222–230.

    PubMed  Google Scholar 

  • Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5, 995–1002.

    PubMed  Google Scholar 

  • Yee, T. S. L., Sala, J. B., & Courtney, S. M. (2003). Differential dorsal and ventral activation in shape versus color working memory. (CD-ROM, Program No. 287.16, Abstracts viewer/itinerary planner). Washington, DC: Society for Neuroscience.

    Google Scholar 

  • Zarahn, E., Aguirre, G. K., & D’Esposito, M. (1999). Temporal isolation of the neural correlates of spatial mnemonic processing with f MRI. Cognitive Brain Research, 7, 255–268.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychological and Brain Sciences, Johns Hopkins University, 227 Ames Hall, 3400 N. Charles Street, 21218, Baltimore, MD

    Susan M. Courtney

Authors
  1. Susan M. Courtney
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Susan M. Courtney.

Additional information

This work was supported by National Institutes of Health Grant R01 MH61625.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Courtney, S.M. Attention and cognitive control as emergent properties of information representation in working memory. Cognitive, Affective, & Behavioral Neuroscience 4, 501–516 (2004). https://doi.org/10.3758/CABN.4.4.501

Download citation

  • Received: 26 July 2004

  • Accepted: 08 November 2004

  • Issue Date: December 2004

  • DOI: https://doi.org/10.3758/CABN.4.4.501

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Prefrontal Cortex
  • Parietal Cortex
  • Stimulus Feature
  • Visual Working Memory
  • Dorsal Stream
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.