The primate working memory networks

Abstract

Working memory has long been associated with the prefrontal cortex, since damage to this brain area can critically impair the ability to maintain and update mnemonic information. Anatomical and physiological evidence suggests, however, that the prefrontal cortex is part of a broader network of interconnected brain areas involved in working memory. These include the parietal and temporal association areas of the cerebral cortex, cingulate and limbic areas, and subcortical structures such as the mediodorsal thalamus and the basal ganglia. Neurophysiological studies in primates confirm the involvement of areas beyond the frontal lobe and illustrate that working memory involves parallel, distributed neuronal networks. In this article, we review the current understanding of the anatomical organization of networks mediating working memory and the neural correlates of memory manifested in each of their nodes. The neural mechanisms of memory maintenance and the integrative role of the prefrontal cortex are also discussed.

References

  1. Akkal, D., Bioulac, B., Audin, J., & Burbaud, P. (2002). Comparison of neuronal activity in the rostral supplementary and cingulate motor areas during a task with cognitive and motor demands. European Journal of Neuroscience, 15, 887–904.

    PubMed  Google Scholar 

  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    PubMed  Google Scholar 

  3. Amador, N., Schlag-Rey, M., & Schlag, J. (2000). Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. Journal of Neurophysiology, 84, 2166–2170.

    PubMed  Google Scholar 

  4. Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.

    PubMed  Google Scholar 

  5. Andersen, R. A., Essick, G. K., & Siegel, R. M. (1987). Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Experimental Brain Research, 67, 316–322.

    Google Scholar 

  6. Andersen, R. A., & Mountcastle, V. B. (1983). The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 3, 532–548.

    PubMed  Google Scholar 

  7. Andersen, R. A., Snyder, L. H., Batista, A. P., Buneo, C. A., & Cohen, Y. E. (1998). Posterior parietal areas specialized for eye movements (LIP) and reach (PRR) using a common coordinate frame. Novartis Foundation Symposium, 218, 109–122.

    PubMed  Google Scholar 

  8. Andersen, R. A., Snyder, L. H., Li, C. S., & Stricanne, B. (1993). Coordinate transformations in the representation of spatial information. Current Opinion in Neurobiology, 3, 171–176.

    PubMed  Google Scholar 

  9. Asaad, W. F., Rainer, G., & Miller, E. K. (2000). Task-specific neural activity in the primate prefrontal cortex. Journal of Neurophysiology, 84, 451–459.

    PubMed  Google Scholar 

  10. Assad, J. A., & Maunsell, J. H. (1995). Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature, 373, 518–521.

    PubMed  Google Scholar 

  11. Azuma, M., & Suzuki, H. (1984). Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Research, 298, 343–346.

    PubMed  Google Scholar 

  12. Baddeley, A. (1992). Working memory. Science, 255, 556–559.

    PubMed  Google Scholar 

  13. Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52, 319–330.

    PubMed  Google Scholar 

  14. Barbas, H., Ghashghaei, H., Dombrowski, S. M. & Rempel-Clower, N. L. (1999). Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. Journal of Comparative Neurology, 410, 343–367.

    PubMed  Google Scholar 

  15. Barbas, H., & Mesulam, M. M. (1985). Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience, 15, 619–637.

    PubMed  Google Scholar 

  16. Barbas, H., & Pandya, D. N. (1987). Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. Journal of Comparative Neurology, 256, 211–228.

    PubMed  Google Scholar 

  17. Bates, J. F., & Goldman-Rakic, P. S. (1993). Prefrontal connections of medial motor areas in the rhesus monkey. Journal of Comparative Neurology, 336, 211–228.

    PubMed  Google Scholar 

  18. Baxter, M. G., Parker, A., Lindner, C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20, 4311–4319.

    PubMed  Google Scholar 

  19. Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428–437.

    PubMed  Google Scholar 

  20. Bisley, J. W., Zaksas, D., Droll, J., & Pasternak, T. (2004). Activity of neurons in cortical area MT during a memory for motion task. Journal of Neurophysiology, 91, 286–300.

    PubMed  Google Scholar 

  21. Blatt, G. J., Andersen, R. A., & Stoner, G. R. (1990). Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. Journal of Comparative Neurology, 299, 421–445.

    PubMed  Google Scholar 

  22. Bodner, M., Kroger, J., & Fuster, J. M. (1996). Auditory memory cells in dorsolateral prefrontal cortex. NeuroReport, 7, 1905–1908.

    PubMed  Google Scholar 

  23. Boussaoud, D., & Wise, S. P. (1993). Primate frontal cortex: Effects of stimulus and movement. Experimental Brain Research, 95, 28–40.

    Google Scholar 

  24. Bremmer, F., Duhamel, J. R., Ben Hamed, S., & Graf, W. (2002). Heading encoding in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16, 1554–1568.

    PubMed  Google Scholar 

  25. Brotchie, P. R., Andersen, R. A., Snyder, L. H., & Goodman, S. J. (1995). Head position signals used by parietal neurons to encode locations of visual stimuli. Nature, 375, 232–235.

    PubMed  Google Scholar 

  26. Buffalo, E. A., Ramus, S. J., Squire, L. R., & Zola, S. M. (2000). Perception and recognition memory in monkeys following lesions of area TE and perirhinal cortex. Learning & Memory, 7, 375–382.

    Google Scholar 

  27. Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46, 755–772.

    PubMed  Google Scholar 

  28. Carmichael, S. T., Clugnet, M. C., & Price, J. L. (1994). Central olfactory connections in the macaque monkey. Journal of Comparative Neurology, 346, 403–434.

    PubMed  Google Scholar 

  29. Castner, S. A., Goldman-Rakic, P. S., & Williams, G. V. (2004). Animal models of working memory: Insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology, 174, 111–125.

    PubMed  Google Scholar 

  30. Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suárez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex: A review. Cerebral Cortex, 10, 220–242.

    PubMed  Google Scholar 

  31. Cavada, C., & Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. Journal of Comparative Neurology, 287, 422–445.

    PubMed  Google Scholar 

  32. Chafee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79, 2919–2940.

    PubMed  Google Scholar 

  33. Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–2940.

    PubMed  Google Scholar 

  34. Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345–347.

    PubMed  Google Scholar 

  35. Chen, G., Greengard, P., & Yan, Z. (2004). Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proceedings of the National Academy of Sciences, 101, 2596–2600.

    Google Scholar 

  36. Cheng, K., Hasegawa, T., Saleem, K. S., & Tanaka, K. (1994). Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. Journal of Neurophysiology, 71, 2269–2280.

    PubMed  Google Scholar 

  37. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. (1993). Ventral intraparietal area of the macaque: Anatomic location and visual response properties. Journal of Neurophysiology, 69, 902–914.

    PubMed  Google Scholar 

  38. Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10, 910–923.

    PubMed  Google Scholar 

  39. Compte, A., Constantinidis, C., Tegner, J., Raghavachari, S., Chafee, M. V., Goldman-Rakic, P. S., & Wang, X. J. (2003). Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. Journal of Neurophysiology, 28, 3441–3454.

    Google Scholar 

  40. Connor, C. E., Gallant, J. L., Preddie, D. C., & Van Essen, D. C. (1996). Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of Neurophysiology, 75, 1306–1308.

    PubMed  Google Scholar 

  41. Connor, C. E., Preddie, D. C., Gallant, J. L., & Van Essen, D. C. (1997). Spatial attention effects in macaque area V4. Journal of Neuroscience, 17, 3201–3214.

    PubMed  Google Scholar 

  42. Constantinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001a). Coding specificity in cortical microcircuits: A multiple electrode analysis of primate prefrontal cortex. Journal of Neuroscience, 21, 3646–3655.

    PubMed  Google Scholar 

  43. Constantinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001b). The sensory nature of mnemonic representation in the primate prefrontal cortex. Nature Neuroscience, 4, 311–316.

    PubMed  Google Scholar 

  44. Constantinidis, C., & Steinmetz, M. A. (1996). Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. Journal of Neurophysiology, 76, 1352–1355.

    PubMed  Google Scholar 

  45. Constantinidis, C., & Steinmetz, M. A. (2001a). Neuronal responses in area 7a to multiple stimulus displays: I. Neurons encode the location of the salient stimulus. Cerebral Cortex, 11, 581–591.

    PubMed  Google Scholar 

  46. Constantinidis, C., & Steinmetz, M. A. (2001b). Neuronal responses in area 7a to multiple stimulus displays: II. Responses are suppressed at the cued location. Cerebral Cortex, 11, 592–597.

    PubMed  Google Scholar 

  47. Cook, E. P., & Maunsell, J. H. (2002). Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. Journal of Neuroscience, 22, 1994–2004.

    PubMed  Google Scholar 

  48. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.

    Google Scholar 

  49. Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71, 1281–1284.

    PubMed  Google Scholar 

  50. Crowe, D. A., Chafee, M. V., Averbeck, B. B., & Georgopoulos, A. P. (2004). Neural activity in primate parietal area 7a related to spatial analysis of visual mazes. Cerebral Cortex, 14, 23–34.

    PubMed  Google Scholar 

  51. Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4, 2051–2062.

    PubMed  Google Scholar 

  52. Desimone, R., Schein, S. J., Moran, J., & Ungerleider, L. G. (1985). Contour, color and shape analysis beyond the striate cortex. Vision Research, 25, 441–452.

    PubMed  Google Scholar 

  53. DiCarlo, J. J., & Maunsell, J. H. (2003). Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. Journal of Neurophysiology, 89, 3264–3278.

    PubMed  Google Scholar 

  54. di Pellegrino, G., & Wise, S. P. (1991). A neurophysiological comparison of three distinct regions of the primate frontal lobe. Brain, 114, 951–978.

    PubMed  Google Scholar 

  55. di Pellegrino, G., & Wise, S. P. (1993a). Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate. Somatosensory & Motor Research, 10, 245–262.

    Google Scholar 

  56. di Pellegrino, G., & Wise, S. P. (1993b). Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. Journal of Neuroscience, 13, 1227–1243.

    PubMed  Google Scholar 

  57. Distler, C., Boussaoud, D., Desimone, R., & Ungerleider, L. G. (1993). Cortical connections of inferior temporal area TEO in macaque monkeys. Journal of Comparative Neurology, 334, 125–150.

    PubMed  Google Scholar 

  58. Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244, 2–8.

    PubMed  Google Scholar 

  59. Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli: I. A continuum of response selectivity to largefield stimuli. Journal of Neurophysiology, 65, 1329–1345.

    PubMed  Google Scholar 

  60. Duhamel, J. R., Bremmer, F., Ben Hamed, S., & Graf, W. (1997). Spatial invariance of visual receptive fields in parietal cortex neurons. Nature, 389, 845–848.

    PubMed  Google Scholar 

  61. Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92.

    PubMed  Google Scholar 

  62. Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. Journal of Neurophysiology, 79, 126–136.

    PubMed  Google Scholar 

  63. Dum, R. P., & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience, 11, 667–689.

    PubMed  Google Scholar 

  64. Dum, R. P., & Strick, P. L. (1993). Cingulate motor areas. In M. Gabriel (Ed.), Neurobiology of cingulate cortex and limbic thalamus (pp. 415–441). Boston: Birkhaüser.

    Google Scholar 

  65. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences23, 475–483.

    PubMed  Google Scholar 

  66. Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopaminemediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83, 1733–1750.

    PubMed  Google Scholar 

  67. Erickson, C. A., & Desimone, R. (1999). Responses of macaque perirhinal neurons during and after visual stimulus association learning. Journal of Neuroscience, 19, 10404–10416.

    PubMed  Google Scholar 

  68. Everling, S., Tinsley, C. J., Gaffan, D., & Duncan, J. (2002). Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience, 5, 671–676.

    PubMed  Google Scholar 

  69. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    PubMed  Google Scholar 

  70. Ferrera, V. P., Nealey, T. A., & Maunsell, J. H. (1992). Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature, 358, 756–761.

    PubMed  Google Scholar 

  71. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.

    PubMed  Google Scholar 

  72. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2002). Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior. Journal of Neurophysiology, 88, 929–941.

    PubMed  Google Scholar 

  73. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). A comparison of primate prefrontal and inferior temporal cortices during visual categorization. Journal of Neuroscience, 23, 5235–5246.

    PubMed  Google Scholar 

  74. Friedman, H. R., & Goldman-Rakic, P. S. (1994). Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. Journal of Neuroscience, 14, 2775–2788.

    PubMed  Google Scholar 

  75. Frith, C. D., Friston, K. J., Liddle, P. F., & Frackowiak, R. S. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society of London: Series B, 244, 241–246.

    Google Scholar 

  76. Fujii, N., & Graybiel, A. M. (2003). Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science, 301, 1246–1249.

    PubMed  Google Scholar 

  77. Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360, 343–346.

    PubMed  Google Scholar 

  78. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.

    PubMed  Google Scholar 

  79. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.” Journal of Neuroscience, 13, 1479–1497.

    PubMed  Google Scholar 

  80. Fuster, J. M. (2001). The prefrontal cortex—an update: Time is of the essence. Neuron, 30, 319–333.

    PubMed  Google Scholar 

  81. Fuster, J. M. (2003). Cortex and mind: Unifying cognition. Oxford: Oxford University Press.

    Google Scholar 

  82. Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173, 652–654.

    PubMed  Google Scholar 

  83. Fuster, J. M., & Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Research, 61, 79–91.

    PubMed  Google Scholar 

  84. Fuster, J. M., Bodner, M., & Kroger, J. K. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex. Nature, 405, 347–351.

    PubMed  Google Scholar 

  85. Fuster, J. M., & Jervey, J. P. (1981). Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science, 212, 952–955.

    PubMed  Google Scholar 

  86. Fuster, J. M., & Jervey, J. P. (1982). Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. Journal of Neuroscience, 2, 361–375.

    PubMed  Google Scholar 

  87. Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W., & Van Essen, D. C. (1996). Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. Journal of Neurophysiology, 76, 2718–2739.

    PubMed  Google Scholar 

  88. Galletti, C., Battaglini, P. P., & Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European Journal of Neuroscience, 7, 2486–2501.

    PubMed  Google Scholar 

  89. Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Journal of Comparative Neurology, 277, 195–213.

    PubMed  Google Scholar 

  90. Gnadt, J. W., & Andersen, R. A. (1988). Memory related motor planning activity in posterior parietal cortex of macaque. Experimental Brain Research, 70,216–2200.

    Google Scholar 

  91. Godschalk, M., Mitz, A. R., van Duin, B., & van der Burg, H. (1995). Somatotopy of monkey premotor cortex examined with microstimulation. Neuroscience Research, 23, 269–279.

    PubMed  Google Scholar 

  92. Goldman-Rakic, P. S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137–156.

    PubMed  Google Scholar 

  93. Goldman-Rakic, P. S. (1998). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex (pp. 87–102). Oxford: Oxford University Press.

    Google Scholar 

  94. Goldman-Rakic, P. S., Bates, J. F., & Chafee, M. V. (1992). The prefrontal cortex and internally generated motor acts. Current Opinion in Neurobiology, 2, 830–835.

    PubMed  Google Scholar 

  95. Goldman-Rakic, P. S., & Porrino, L. J. (1985). The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. Journal of Comparative Neurology, 242, 535–560.

    PubMed  Google Scholar 

  96. Gottlieb, J. P., Kusunoki, M., & Goldberg, M. E. (1998). The representation of visual salience in monkey parietal cortex. Nature, 391, 481–484.

    PubMed  Google Scholar 

  97. Gross, C. G., Bender, D. B., & Gerstein, G. L. (1979). Activity of inferior temporal neurons in behaving monkeys. Neuropsychologia, 17, 215–229.

    PubMed  Google Scholar 

  98. Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35, 96–111.

    PubMed  Google Scholar 

  99. Grunewald, A., Linden, J. F., & Andersen, R. A. (1999). Responses to auditory stimuli in macaque lateral intraparietal area: I. Effects of training. Journal of Neurophysiology, 82, 330–342.

    PubMed  Google Scholar 

  100. Haber, S. N., Kunishio, K., Mizobuchi, M., & Lynd-Balta, E. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. Journal of Neuroscience, 15, 4851–4867.

    PubMed  Google Scholar 

  101. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999). Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research, 817, 45–58.

    PubMed  Google Scholar 

  102. Hadj-Bouziane, F., Meunier, M., & Boussaoud, D. (2003). Conditional visuo-motor learning in primates: A key role for the basal ganglia. Journal of Physiology, 97, 567–579.

    PubMed  Google Scholar 

  103. Hadland, K. A., Rushworth, M. F., Gaffan, D., & Passingham, R. E. (2003). The anterior cingulate and reward-guided selection of actions. Journal of Neurophysiology, 89, 1161–1164.

    PubMed  Google Scholar 

  104. Haenny, P. E., Maunsell, J. H., & Schiller, P. H. (1988). State dependent activity in monkey visual cortex: II. Retinal and extraretinal factors in V4. Experimental Brain Research, 69, 245–259.

    Google Scholar 

  105. Hampson, R. E., Pons, T. P., Stanford, T. R., & Deadwyler, S. A. (2004). Categorization in the monkey hippocampus: A possible mechanism for encoding information into memory. Proceedings of the National Academy of Sciences, 101, 3184–3189.

    Google Scholar 

  106. Hatanaka, N., Tokuno, H., Hamada, I., Inase, M., Ito, Y., Imanishi, M., Hasegawa, N., Akazawa, T., Nambu, A., & Takada, M. (2003). Thalamocortical and intracortical connections of monkey cingulate motor areas. Journal of Comparative Neurology, 462, 121–138.

    PubMed  Google Scholar 

  107. Heuer, H. W., & Britten, K. H. (2004). Optic flow signals in extrastriate area MST: Comparison of perceptual and neuronal sensitivity. Journal of Neurophysiology, 91, 1314–1326.

    PubMed  Google Scholar 

  108. Hikosaka, K., & Watanabe, M. (2000). Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cerebral Cortex, 10, 263–271.

    PubMed  Google Scholar 

  109. Hikosaka, O., Sakamoto, M., & Usui, S. (1989a). Functional properties of monkey caudate neurons: I. Activities related to saccadic eye movements. Journal of Neurophysiology, 61, 780–798.

    PubMed  Google Scholar 

  110. Hikosaka, O., Sakamoto, M., & Usui, S. (1989b). Functional properties of monkey caudate neurons: III. Activities related to expectation of target and reward. Journal of Neurophysiology, 61, 814–832.

    PubMed  Google Scholar 

  111. Hinkle, D. A., & Connor, C. E. (2002). Three-dimensional orientation tuning in macaque area V4. Nature Neuroscience, 5, 665–670.

    PubMed  Google Scholar 

  112. Holscher, C., & Rolls, E. T. (2002). Perirhinal cortex neuronal activity is actively related to working memory in the macaque. Neural Plasticity, 9, 41–51.

    PubMed  Google Scholar 

  113. Holscher, C., Rolls, E. T., & Xiang, J. (2003). Perirhinal cortex neuronal activity related to long-term familiarity memory in the macaque. European Journal of Neuroscience, 18,2037–20466.

    PubMed  Google Scholar 

  114. Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5, 95–110.

    PubMed  Google Scholar 

  115. Hsiao, S. S., O’Shaughnessy, D. M., & Johnson, K. O. (1993). Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. Journal of Neurophysiology, 70, 444–447.

    PubMed  Google Scholar 

  116. Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1986). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. Journal of Comparative Neurology, 253, 415–439.

    PubMed  Google Scholar 

  117. Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1987). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: II. Cortical connections. Journal of Comparative Neurology, 265,332–3611.

    PubMed  Google Scholar 

  118. Iba, M., & Sawaguchi, T. (2003). Involvement of the dorsolateral prefrontal cortex of monkeys in visuospatial target selection. Journal of Neurophysiology, 89, 587–599.

    PubMed  Google Scholar 

  119. Ifuku, H., Hirata, S., Nakamura, T., & Ogawa, H. (2003). Neuronal activities in the monkey primary and higher-order gustatory cortices during a taste discrimination delayed GO/NOGO task and after reversal. Neuroscience Research, 47, 161–175.

    PubMed  Google Scholar 

  120. Inoue, M., Mikami, A., Ando, I., & Tsukada, H. (2004). Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cerebral Cortex, 14, 106–119.

    PubMed  Google Scholar 

  121. Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex. Journal of Neuroscience, 23, 8002–8012.

    PubMed  Google Scholar 

  122. Ito, M., Tamura, H., Fujita, I., & Tanaka, K. (1995). Size and position invariance of neuronal responses in monkey inferotemporal cortex. Journal of Neurophysiology, 73, 218–226.

    PubMed  Google Scholar 

  123. Jacobsen, C. F. (1936). Studies of cerebral function in primates. Comparative Psychology Monogaphs, 13, 1–68.

    Google Scholar 

  124. Jagadeesh, B., Chelazzi, L., Mishkin, M., & Desimone, R. (2001). Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. Journal of Neurophysiology, 86, 290–303.

    PubMed  Google Scholar 

  125. Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474.

    PubMed  Google Scholar 

  126. Jones, E. G., Dell’Anna, M. E., Molinari, M., Rausell, E., & Hashikawa, T. (1995). Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. Journal of Comparative Neurology, 362, 153–170.

    PubMed  Google Scholar 

  127. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.

    PubMed  Google Scholar 

  128. Jouffrais, C., & Boussaoud, D. (1999). Neuronal activity related to eye-hand coordination in the primate premotor cortex. Experimental Brain Research, 128, 205–209.

    Google Scholar 

  129. Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences, 97, 11793–11799.

    Google Scholar 

  130. Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1, 411–416.

    PubMed  Google Scholar 

  131. Kawamura, K., & Naito, J. (1984). Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques. Neuroscience Research, 1, 89–103.

    PubMed  Google Scholar 

  132. Kermadi, I., & Joseph, J. P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74, 911–933.

    PubMed  Google Scholar 

  133. Koch, C., & Fuster, J. M. (1989). Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Experimental Brain Research, 76, 292–306.

    Google Scholar 

  134. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185.

    PubMed  Google Scholar 

  135. Komatsu, H., & Wurtz, R. H. (1988). Relation of cortical areas MT and MST to pursuit eye movements: I. Localization and visual properties of neurons. Journal of Neurophysiology, 60, 580–603.

    PubMed  Google Scholar 

  136. Kosaki, H., Hashikawa, T., He J., & Jones, E. G. (1997). Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. Journal of Comparative Neurology, 386, 304–316.

    PubMed  Google Scholar 

  137. Koski, L., & Paus, T. (2000). Functional connectivity of the anterior cingulate cortex within the human frontal lobe: A brain-mapping meta-analysis. Experimental Brain Research, 133, 55–65.

    Google Scholar 

  138. Kritzer, M. F., & Goldman-Rakic, P. S. (1995). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 359, 131–143.

    PubMed  Google Scholar 

  139. Leon, M. L., & Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24, 415–425.

    PubMed  Google Scholar 

  140. Lisman, J. E., Fellous, J. M., & Wang, X. J. (1998). A role for NMDAreceptor channels in working memory. Nature Neuroscience, 1, 273–275.

    PubMed  Google Scholar 

  141. Liu, Z., & Richmond, B. J. (2000). Response differences in monkey TE and perirhinal cortex: Stimulus association related to reward schedules. Journal of Neurophysiology, 83, 1677–1692.

    PubMed  Google Scholar 

  142. Llinas, R. R., Leznik, E., & Urbano, F. J. (2002). Temporal binding via cortical coincidence detection of specific and nonspecific thala mocortical inputs: A voltage-dependent dye-imaging study in mouse brain slices. Proceedings of the National Academy of Sciences, 99, 449–454.

    Google Scholar 

  143. Llinas, R. R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philosophical Transactions of the Royal Society of London: Series B, 353, 1841–1849.

    Google Scholar 

  144. Logothetis, N. K., & Pauls, J. (1995). Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cerebral Cortex, 5, 270–288.

    PubMed  Google Scholar 

  145. Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552–563.

    PubMed  Google Scholar 

  146. Lu, M. T., Preston, J. B., & Strick, P. L. (1994). Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. Journal of Comparative Neurology, 341, 375–392.

    PubMed  Google Scholar 

  147. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.

    PubMed  Google Scholar 

  148. Luppino, G., Matelli, M., Camarda, R. M., Gallese, V., & Rizzolatti, G. (1991). Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey. Journal of Comparative Neurology, 311, 463–482.

    PubMed  Google Scholar 

  149. Lynch, J. C., Mountcastle, V. B., Talbot, W. H., & Yin, T. C. (1977). Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology, 40, 362–389.

    PubMed  Google Scholar 

  150. MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.

    PubMed  Google Scholar 

  151. Markowitsch, H. J., Emmans, D., Irle, E., Streicher, M., & Preilowski, B. (1985). Cortical and subcortical afferent connections of the primate’s temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets. Journal of Comparative Neurology, 242, 425–458.

    PubMed  Google Scholar 

  152. Matelli, M., Luppino, G., & Rizzolatti, G. (1991). Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. Journal of Comparative Neurology, 311, 445–462.

    PubMed  Google Scholar 

  153. Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 301, 229–232.

    PubMed  Google Scholar 

  154. Mazzoni, P., Bracewell, R. M., Barash, S., & Andersen, R. A. (1996). Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. Journal of Neurophysiology, 75, 1233–1241.

    PubMed  Google Scholar 

  155. McGuire, P. K., Bates, J. F., & Goldman-Rakic, P. S. (1991). Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cerebral Cortex, 1, 390–407.

    PubMed  Google Scholar 

  156. Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2001). Effects of optic flow in motor cortex and area 7a. Journal of Neurophysiology, 86, 1937–1954.

    PubMed  Google Scholar 

  157. Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2004). Neural responses in motor cortex and area 7a to real and apparent motion. Experimental Brain Research, 154, 291–307.

    Google Scholar 

  158. Messier, J., & Kalaska, J. F. (2000). Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorizeddelay reaching task. Journal of Neurophysiology, 84, 152–165.

    PubMed  Google Scholar 

  159. Messinger, A., Squire, L. R., Zola, S. M., & Albright, T. D. (2001). Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proceedings of the National Academy of Sciences, 98, 12239–12244.

    Google Scholar 

  160. Meunier, M., Bachevalier, J., & Mishkin, M. (1997). Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia, 35, 999–1015.

    PubMed  Google Scholar 

  161. Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia “projections” to the prefrontal cortex of the primate. Cerebral Cortex, 12, 926–935.

    PubMed  Google Scholar 

  162. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    PubMed  Google Scholar 

  163. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16, 5154–5167.

    PubMed  Google Scholar 

  164. Miller, E. K., Li, L., & Desimone, R. (1991). A neural mechanism for working and recognition memory in inferior temporal cortex. Science, 254, 1377–1379.

    PubMed  Google Scholar 

  165. Miller, E. K., Li L., & Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. Journal of Neuroscience, 13, 1460–1478.

    PubMed  Google Scholar 

  166. Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 100–110.

    Google Scholar 

  167. Mitz, A. R., & Wise, S. P. (1987). The somatotopic organization of the supplementary motor area: Intracortical microstimulation mapping. Journal of Neuroscience, 7, 1010–1021.

    PubMed  Google Scholar 

  168. Miyashita, Y., & Chang, H. S. (1988). Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature, 331, 68–70.

    PubMed  Google Scholar 

  169. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–784.

    PubMed  Google Scholar 

  170. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience, 14, 2178–2189.

    PubMed  Google Scholar 

  171. Motter, B. C., & Mountcastle, V. B. (1981). The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience, 1, 3–26.

    PubMed  Google Scholar 

  172. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., & Acuna, C. (1975). Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. Journal of Neurophysiology, 38, 871–908.

    PubMed  Google Scholar 

  173. Nakamura, K., & Colby, C. L. (2000). Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. Journal of Neurophysiology, 84, 677–692.

    PubMed  Google Scholar 

  174. Nakamura, K., & Kubota, K. (1995). Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. Journal of Neurophysiology, 74, 162–178.

    PubMed  Google Scholar 

  175. Nakamura, K., Sakai, K., & Hikosaka, O. (1998). Neuronal activity in medial frontal cortex during learning of sequential procedures. Journal of Neurophysiology, 80, 2671–2687.

    PubMed  Google Scholar 

  176. Naya, Y., Yoshida, M., & Miyashita, Y. (2001). Backward spreading of memory-retrieval signal in the primate temporal cortex. Science, 291, 661–664.

    PubMed  Google Scholar 

  177. Newsome, W. T., Mikami, A., & Wurtz, R. H. (1986). Motion selectivity in macaque visual cortex: III. Psychophysics and physiology of apparent motion. Journal of Neurophysiology, 55, 1340–1351.

    PubMed  Google Scholar 

  178. Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.

    PubMed  Google Scholar 

  179. Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37, 149–157.

    PubMed  Google Scholar 

  180. Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences, 101, 7457–7462.

    Google Scholar 

  181. Niki, H., & Watanabe, M. (1976). Cingulate unit activity and delayed response. Brain Research, 110, 381–386.

    PubMed  Google Scholar 

  182. Olson, C. R., & Gettner, S. N. (1995). Object-centered direction selectivity in the macaque supplementary eye field. Science, 269, 985–988.

    PubMed  Google Scholar 

  183. Op De Beeck, H., & Vogels, R. (2000). Spatial sensitivity of macaque inferior temporal neurons. Journal of Comparative Neurology, 426, 505–518.

    PubMed  Google Scholar 

  184. Ó Scalaidhe, S., Wilson, F. A., & Goldman-Rakic, P. S. (1997). Areal segregation of face-processing neurons in prefrontal cortex. Science, 278, 1135–1138.

    PubMed  Google Scholar 

  185. Passingham, R. (1993). The frontal lobes and voluntary action. Oxford: Oxford University Press.

    Google Scholar 

  186. Pasupathy, A., & Connor, C. E. (2001). Shape representation in area V4: Position-specific tuning for boundary conformation. Journal of Neurophysiology, 86, 2505–2519.

    PubMed  Google Scholar 

  187. Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417–424.

    PubMed  Google Scholar 

  188. Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70, 453–469.

    PubMed  Google Scholar 

  189. Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., & Andersen, R. A. (2002). Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience, 5, 805–811.

    PubMed  Google Scholar 

  190. Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133, 44–54.

    Google Scholar 

  191. Phillips, J. R., Johnson, K. O., & Hsiao, S. S. (1988). Spatial pattern representation and transformation in monkey somatosensory cortex. Proceedings of the National Academy of Sciences, 85, 1317–1321.

    Google Scholar 

  192. Phinney, R. E., & Siegel, R. M. (2000). Speed selectivity for optic flow in area 7a of the behaving macaque. Cerebral Cortex, 10, 413–421.

    PubMed  Google Scholar 

  193. Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400, 233–238.

    PubMed  Google Scholar 

  194. Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: Conflict, target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain (pp. 401–423). Cambridge, MA: MIT Press.

    Google Scholar 

  195. Powell, K. D., & Goldberg, M. E. (2000). Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. Journal of Neurophysiology, 84, 301–310.

    PubMed  Google Scholar 

  196. Preuss, T. M., & Goldman-Rakic, P. S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. Journal of Comparative Neurology, 310, 475–506.

    PubMed  Google Scholar 

  197. Procyk, E., & Joseph, J. P. (2001). Characterization of serial order encoding in the monkey anterior cingulate sulcus. European Journal of Neuroscience, 14, 1041–1046.

    PubMed  Google Scholar 

  198. Procyk, E., Tanaka, Y. L., & Joseph, J. P. (2000). Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nature Neuroscience, 3, 502–508.

    PubMed  Google Scholar 

  199. Pucak, M. L., Levitt, J. B., Lund, J. S., & Lewis, D. A. (1996). Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. Journal of Comparative Neurology, 376, 614–630.

    PubMed  Google Scholar 

  200. Quintana, J., & Fuster, J. M. (1992). Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport, 3, 721–724.

    PubMed  Google Scholar 

  201. Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L., Lagae, L., & Orban, G. A. (1997). Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque. NeuroReport, 8, 2803–2808.

    PubMed  Google Scholar 

  202. Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.

    PubMed  Google Scholar 

  203. Rainer, G., & Miller, E. K. (2002). Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. European Journal of Neuroscience, 15, 1244–1254.

    PubMed  Google Scholar 

  204. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.

    PubMed  Google Scholar 

  205. Rauschecker, J. P., Tian, B., & Hauser, M. (1995). Processing of complex sounds in the macaque nonprimary auditory cortex. Science, 268, 111–114.

    PubMed  Google Scholar 

  206. Richmond, B. J., Wurtz, R. H., & Sato, T. (1983). Visual responses of inferior temporal neurons in awake rhesus monkey. Journal of Neurophysiology, 50, 1415–1432.

    PubMed  Google Scholar 

  207. Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron, 31, 889–901.

    PubMed  Google Scholar 

  208. Rolls, E. T. (2002). The functions of the orbitofrontal cortex. In R. T. Knight (Ed.), Principles of frontal lobe function (pp. 354–375). Oxford: Oxford University Press.

    Google Scholar 

  209. Rolls, E. T., Aggelopoulos, N. C., & Zheng, F. (2003). The receptive fields of inferior temporal cortex neurons in natural scenes. Journal of Neuroscience, 23, 339–348.

    PubMed  Google Scholar 

  210. Romanski, L. M., Bates, J. F., & Goldman-Rakic, P. S. (1999). Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 403, 141–157.

    PubMed  Google Scholar 

  211. Romanski, L. M., Giguere, M., Bates, J. F., & Goldman-Rakic, P. S. (1997). Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 379, 313–332.

    PubMed  Google Scholar 

  212. Romanski, L. M., & Goldman-Rakic, P. S. (2002). An auditory domain in primate prefrontal cortex. Nature Neuroscience, 5, 15–16.

    PubMed  Google Scholar 

  213. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2, 1131–1136.

    PubMed  Google Scholar 

  214. Romo, R., Brody, C. D., Hernandez, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399, 470–473.

    PubMed  Google Scholar 

  215. Romo, R., Hernandez, A., Zainos, A., Lemus, L., & Brody, C. D. (2002). Neuronal correlates of decision-making in secondary somatosensory cortex. Nature Neuroscience, 5, 1217–1225.

    PubMed  Google Scholar 

  216. Rosenkilde, C. E., Bauer, R. H., & Fuster, J. M. (1981). Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Research, 209, 375–394.

    PubMed  Google Scholar 

  217. Rouiller, E. M., Tanne, J., Moret, V., & Boussaoud, D. (1999). Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: A multiple retrograde tracing study. Journal of Comparative Neurology, 409, 131–152.

    PubMed  Google Scholar 

  218. Rushworth, M. F., Hadland, K. A., Gaffan, D., & Passingham, R. E. (2003). The effect of cingulate cortex lesions on task switching and working memory. Journal of Cognitive Neuroscience, 15, 338–353.

    PubMed  Google Scholar 

  219. Russo, G. S., & Bruce, C. J. (1996). Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Journal of Neurophysiology, 76, 825–848.

    PubMed  Google Scholar 

  220. Sakai, K., & Miyashita, Y. (1991). Neural organization for the longterm memory of paired associates. Nature, 354, 152–155.

    PubMed  Google Scholar 

  221. Salinas, E. (2004). Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. Journal of Neuroscience, 24, 1113–1118.

    PubMed  Google Scholar 

  222. Sato, N., & Nakamura, K. (2003). Visual response properties of neurons in the parahippocampal cortex of monkeys. Journal of Neurophysiology, 90, 876–886.

    PubMed  Google Scholar 

  223. Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947–950.

    PubMed  Google Scholar 

  224. Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71, 515–528.

    PubMed  Google Scholar 

  225. Schlag, J., & Schlag-Rey, M. (1987). Evidence for a supplementary eye field. Journal of Neurophysiology, 57, 179–200.

    PubMed  Google Scholar 

  226. Schlag-Rey, M., Amador, N., Sanchez, H., & Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature, 390, 398–401.

    PubMed  Google Scholar 

  227. Schultz, W. (2001). Reward signaling by dopamine neurons. Neuroscientist, 7, 293–302.

    PubMed  Google Scholar 

  228. Schwartz, E. L., Desimone, R., Albright, T. D., & Gross, C. G. (1983). Shape recognition and inferior temporal neurons. Proceedings of the National Academy of Sciences, 80, 5776–5778.

    Google Scholar 

  229. Seamans, J. K., Durstewitz, D., Christie, B. R., Stevens, C. F., & Sejnowski, T. J. (2001). Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proceedings of the National Academy of Sciences, 98, 301–306.

    Google Scholar 

  230. Selemon, L. D., & Goldman-Rakic, P. S. (1985). Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. Journal of Neuroscience, 5, 776–794.

    PubMed  Google Scholar 

  231. Selemon, L. D., & Goldman-Rakic, P. S. (1988). Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior. Journal of Neuroscience, 8, 4049–4068.

    PubMed  Google Scholar 

  232. Sereno, A. B., & Maunsell, J. H. (1998). Shape selectivity in primate lateral intraparietal cortex. Nature, 395, 500–503.

    PubMed  Google Scholar 

  233. Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86, 1916–1936.

    PubMed  Google Scholar 

  234. Shallice, T. (1988). From neuropsychology to mental structure. Cambridge: Cambridge University Press.

    Google Scholar 

  235. Sheinberg, D. L., & Logothetis, N. K. (1997). The role of temporal cortical areas in perceptual organization. Proceedings of the National Academy of Sciences, 94, 3408–3413.

    Google Scholar 

  236. Shibutani, H., Sakata, H., & Hyvarinen, J. (1984). Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Experimental Brain Research, 55, 1–8.

    Google Scholar 

  237. Shidara, M., & Richmond, B. J. (2002). Anterior cingulate: Single neuronal signals related to degree of reward expectancy. Science, 296, 1709–1711.

    PubMed  Google Scholar 

  238. Shima, K., Mushiake, H., Saito, N., & Tanji, J. (1996). Role for cells in the presupplementary motor area in updating motor plans. Proceedings of the National Academy of Sciences, 93, 8694–8698.

    Google Scholar 

  239. Shima, K., & Tanji, J. (1998). Role for cingulate motor area cells in voluntary movement selection based on reward. Science, 282, 1335–1338.

    PubMed  Google Scholar 

  240. Sigala, N., & Logothetis, N. K. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415, 318–320.

    PubMed  Google Scholar 

  241. Snyder, L. H., Batista, A. P., & Andersen, R. A. (1997). Coding of intention in the posterior parietal cortex. Nature, 386, 167–170.

    PubMed  Google Scholar 

  242. Snyder, L. H., Grieve, K. L., Brotchie, P., & Andersen, R. A. (1998). Separate body- and world-referenced representations of visual space in parietal cortex. Nature, 394, 887–891.

    PubMed  Google Scholar 

  243. Steinmetz, M. A., Connor, C. E., Constantinidis, C., & McLaughlin, J. R. (1994). Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. Journal of Neurophysiology, 72, 1020–1023.

    PubMed  Google Scholar 

  244. Steinmetz, M. A., & Constantinidis, C. (1995). Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cerebral Cortex, 5, 448–456.

    PubMed  Google Scholar 

  245. Steinmetz, M. A., Motter, B. C., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field. Journal of Neuroscience, 7, 177–191.

    PubMed  Google Scholar 

  246. Stoet, G., & Snyder, L. H. (2004). Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron, 42, 1003–1012.

    PubMed  Google Scholar 

  247. Stuphorn, V., Taylor, T. L., & Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408, 857–860.

    PubMed  Google Scholar 

  248. Super, H., Spekreijse, H., & Lamme, V. A. (2001). A neural correlate of working memory in the monkey primary visual cortex. Science, 293, 120–124.

    PubMed  Google Scholar 

  249. Suzuki, W. A., Miller, E. K., & Desimone, R. (1997). Object and place memory in the macaque entorhinal cortex. Journal of Neurophysiology, 78, 1062–1081.

    PubMed  Google Scholar 

  250. Takada, M., Nambu, A., Hatanaka, N., Tachibana, Y., Miyachi, S., Taira, M., & Inase, M. (2004). Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys. European Journal of Neuroscience, 19, 3328–3342.

    PubMed  Google Scholar 

  251. Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.

    PubMed  Google Scholar 

  252. Tanibuchi, I., & Goldman-Rakic, P. S. (2003). Dissociation of spatial-, object-, and sound-coding neurons in the mediodorsal nucleus of the primate thalamus. Journal of Neurophysiology, 89, 1067–1077.

    PubMed  Google Scholar 

  253. Tanji, J., & Shima, K. (1994). Role for supplementary motor area cells in planning several movements ahead. Nature, 371, 413–416.

    PubMed  Google Scholar 

  254. Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K. P. (2002). Neural mechanisms of saccadic suppression. Science, 295, 2460–2462.

    PubMed  Google Scholar 

  255. Toth, L. J., & Assad, J. A. (2002). Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature, 415, 165–168.

    PubMed  Google Scholar 

  256. Tovee, M. J., Rolls, E. T., & Azzopardi, P. (1994). Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. Journal of Neurophysiology, 72, 1049–1060.

    PubMed  Google Scholar 

  257. Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 398, 704–708.

    PubMed  Google Scholar 

  258. Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–541.

    PubMed  Google Scholar 

  259. Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences, 95, 883–890.

    Google Scholar 

  260. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  261. Vaadia, E., Benson, D. A., Hienz, R. D., & Goldstein, M. H., Jr. (1986). Unit study of monkey frontal cortex: Active localization of auditory and of visual stimuli. Journal of Neurophysiology, 56, 934–952.

    PubMed  Google Scholar 

  262. Walker, A. E. (1940). A cytoarchitectural study of the prefrontal area of the macaque monkey. Journal of Comparative Neurology, 73, 59–86.

    Google Scholar 

  263. Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411, 953–956.

    PubMed  Google Scholar 

  264. Wallis, J. D., Dias, R., Robbins, T. W., & Roberts, A. C. (2001). Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. European Journal of Neuroscience, 13, 1797–1808.

    PubMed  Google Scholar 

  265. Wallis, J. D., & Miller, E. K. (2003a). From rule to response: Neuronal processes in the premotor and prefrontal cortex. Journal of Neurophysiology, 90, 1790–1806.

    PubMed  Google Scholar 

  266. Wallis, J. D., & Miller, E. K. (2003b). Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. European Journal of Neuroscience, 18, 2069–2081.

    PubMed  Google Scholar 

  267. Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24, 455–463.

    PubMed  Google Scholar 

  268. Wang, X. J., Tegner, J., Constantinidis, C., & Goldman-Rakic, P. S. (2004). Division of labor among distinct inhibitory neurons in a cortical microcircuit of working memory. Proceedings of the National Academy of Sciences, 101, 1368–1373.

    Google Scholar 

  269. Wang, Y., Matsuzaka, Y., Shima, K., & Tanji, J. (2004). Cingulate cortical cells projecting to monkey frontal eye field and primary motor cortex. NeuroReport, 15, 1559–1563.

    PubMed  Google Scholar 

  270. Wang, Y., Shima, K., Isoda, M., Sawamura, H., & Tanji, J. (2002). Spatial distribution and density of prefrontal cortical cells projecting to three sectors of the premotor cortex. NeuroReport, 13, 1341–1344.

    PubMed  Google Scholar 

  271. Wang, Y., Shima, K., Sawamura, H., & Tanji, J. (2001). Spatial distribution of cingulate cells projecting to the primary, supplementary, and pre-supplementary motor areas: A retrograde multiple labeling study in the macaque monkey. Neuroscience Research, 39 39–49.

    PubMed  Google Scholar 

  272. Watanabe, Y., & Funahashi, S. (2004a). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses: I. Cue-, delay-, and response-period activity. Journal of Neurophysiology, 92, 1738–1755.

    PubMed  Google Scholar 

  273. Watanabe, Y., & Funahashi, S. (2004b). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses: II. Activity encoding visual versus motor signal. Journal of Neurophysiology, 92, 1756–1769.

    PubMed  Google Scholar 

  274. Watanabe-Sawaguchi, K., Kubota, K., & Arikuni, T. (1991). Cytoarchitecture and intrafrontal connections of the frontal cortex of the brain of the hamadryas baboon (Papio hamadryas). Journal of Comparative Neurology, 311, 108–133.

    PubMed  Google Scholar 

  275. Webster, M. J., Bachevalier, J., & Ungerleider, L. G. (1994). Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cerebral Cortex, 4, 470–483.

    PubMed  Google Scholar 

  276. White, I. M., & Wise, S. P. (1999). Rule-dependent neuronal activity in the prefrontal cortex. Experimental Brain Research, 126, 315–335.

    Google Scholar 

  277. Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376, 572–575.

    PubMed  Google Scholar 

  278. Williams, S. M., & Goldman-Rakic, P. S. (1993). Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cerebral Cortex, 3, 199–222.

    PubMed  Google Scholar 

  279. Wilson, F. A., Ó Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.

    PubMed  Google Scholar 

  280. Wise, S. P., Murray, E. A., & Gerfen, C. R. (1996). The frontal cortexbasal ganglia system in primates. Critical Reviews in Neurobiology, 10, 317–356.

    PubMed  Google Scholar 

  281. Yakovlev, V., Fusi, S., Berman, E., & Zohary, E. (1998). Inter-trial neuronal activity in inferior temporal cortex: A putative vehicle to generate long-term visual associations. Nature Neuroscience, 1, 310–317.

    PubMed  Google Scholar 

  282. Yang, C. R., & Seamans, J. K. (1996). Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration. Journal of Neuroscience, 16, 1922–1935.

    PubMed  Google Scholar 

  283. Zeki, S. M. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology, 277, 273–290.

    PubMed  Google Scholar 

  284. Zhou, Y. D., & Fuster, J. M. (1996). Mnemonic neuronal activity in somatosensory cortex. Proceedings of the National Academy of Sciences, 93, 10533–10537.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christos Constantinidis.

Additional information

C.C. was supported by the McDonnell Foundation and the Whitehall Foundation, and E.P. was supported by the Fyssen Foundation and the NRJ Foundation. This work is dedicated to the memory of Patricia S. Goldman-Rakic, our mentor, friend, and unending source of inspiration.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Constantinidis, C., Procyk, E. The primate working memory networks. Cognitive, Affective, & Behavioral Neuroscience 4, 444–465 (2004). https://doi.org/10.3758/CABN.4.4.444

Download citation

Keywords

  • Prefrontal Cortex
  • Receptive Field
  • Posterior Parietal Cortex
  • Macaque Monkey
  • Experimental Brain Research