Cognitive, Affective, & Behavioral Neuroscience

, Volume 4, Issue 4, pp 444–465 | Cite as

The primate working memory networks

Article

Abstract

Working memory has long been associated with the prefrontal cortex, since damage to this brain area can critically impair the ability to maintain and update mnemonic information. Anatomical and physiological evidence suggests, however, that the prefrontal cortex is part of a broader network of interconnected brain areas involved in working memory. These include the parietal and temporal association areas of the cerebral cortex, cingulate and limbic areas, and subcortical structures such as the mediodorsal thalamus and the basal ganglia. Neurophysiological studies in primates confirm the involvement of areas beyond the frontal lobe and illustrate that working memory involves parallel, distributed neuronal networks. In this article, we review the current understanding of the anatomical organization of networks mediating working memory and the neural correlates of memory manifested in each of their nodes. The neural mechanisms of memory maintenance and the integrative role of the prefrontal cortex are also discussed.

References

  1. Akkal, D., Bioulac, B., Audin, J., & Burbaud, P. (2002). Comparison of neuronal activity in the rostral supplementary and cingulate motor areas during a task with cognitive and motor demands. European Journal of Neuroscience, 15, 887–904.PubMedGoogle Scholar
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedGoogle Scholar
  3. Amador, N., Schlag-Rey, M., & Schlag, J. (2000). Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. Journal of Neurophysiology, 84, 2166–2170.PubMedGoogle Scholar
  4. Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.PubMedGoogle Scholar
  5. Andersen, R. A., Essick, G. K., & Siegel, R. M. (1987). Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Experimental Brain Research, 67, 316–322.Google Scholar
  6. Andersen, R. A., & Mountcastle, V. B. (1983). The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 3, 532–548.PubMedGoogle Scholar
  7. Andersen, R. A., Snyder, L. H., Batista, A. P., Buneo, C. A., & Cohen, Y. E. (1998). Posterior parietal areas specialized for eye movements (LIP) and reach (PRR) using a common coordinate frame. Novartis Foundation Symposium, 218, 109–122.PubMedGoogle Scholar
  8. Andersen, R. A., Snyder, L. H., Li, C. S., & Stricanne, B. (1993). Coordinate transformations in the representation of spatial information. Current Opinion in Neurobiology, 3, 171–176.PubMedGoogle Scholar
  9. Asaad, W. F., Rainer, G., & Miller, E. K. (2000). Task-specific neural activity in the primate prefrontal cortex. Journal of Neurophysiology, 84, 451–459.PubMedGoogle Scholar
  10. Assad, J. A., & Maunsell, J. H. (1995). Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature, 373, 518–521.PubMedGoogle Scholar
  11. Azuma, M., & Suzuki, H. (1984). Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Research, 298, 343–346.PubMedGoogle Scholar
  12. Baddeley, A. (1992). Working memory. Science, 255, 556–559.PubMedGoogle Scholar
  13. Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52, 319–330.PubMedGoogle Scholar
  14. Barbas, H., Ghashghaei, H., Dombrowski, S. M. & Rempel-Clower, N. L. (1999). Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. Journal of Comparative Neurology, 410, 343–367.PubMedGoogle Scholar
  15. Barbas, H., & Mesulam, M. M. (1985). Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience, 15, 619–637.PubMedGoogle Scholar
  16. Barbas, H., & Pandya, D. N. (1987). Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. Journal of Comparative Neurology, 256, 211–228.PubMedGoogle Scholar
  17. Bates, J. F., & Goldman-Rakic, P. S. (1993). Prefrontal connections of medial motor areas in the rhesus monkey. Journal of Comparative Neurology, 336, 211–228.PubMedGoogle Scholar
  18. Baxter, M. G., Parker, A., Lindner, C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20, 4311–4319.PubMedGoogle Scholar
  19. Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428–437.PubMedGoogle Scholar
  20. Bisley, J. W., Zaksas, D., Droll, J., & Pasternak, T. (2004). Activity of neurons in cortical area MT during a memory for motion task. Journal of Neurophysiology, 91, 286–300.PubMedGoogle Scholar
  21. Blatt, G. J., Andersen, R. A., & Stoner, G. R. (1990). Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. Journal of Comparative Neurology, 299, 421–445.PubMedGoogle Scholar
  22. Bodner, M., Kroger, J., & Fuster, J. M. (1996). Auditory memory cells in dorsolateral prefrontal cortex. NeuroReport, 7, 1905–1908.PubMedGoogle Scholar
  23. Boussaoud, D., & Wise, S. P. (1993). Primate frontal cortex: Effects of stimulus and movement. Experimental Brain Research, 95, 28–40.Google Scholar
  24. Bremmer, F., Duhamel, J. R., Ben Hamed, S., & Graf, W. (2002). Heading encoding in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16, 1554–1568.PubMedGoogle Scholar
  25. Brotchie, P. R., Andersen, R. A., Snyder, L. H., & Goodman, S. J. (1995). Head position signals used by parietal neurons to encode locations of visual stimuli. Nature, 375, 232–235.PubMedGoogle Scholar
  26. Buffalo, E. A., Ramus, S. J., Squire, L. R., & Zola, S. M. (2000). Perception and recognition memory in monkeys following lesions of area TE and perirhinal cortex. Learning & Memory, 7, 375–382.Google Scholar
  27. Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46, 755–772.PubMedGoogle Scholar
  28. Carmichael, S. T., Clugnet, M. C., & Price, J. L. (1994). Central olfactory connections in the macaque monkey. Journal of Comparative Neurology, 346, 403–434.PubMedGoogle Scholar
  29. Castner, S. A., Goldman-Rakic, P. S., & Williams, G. V. (2004). Animal models of working memory: Insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology, 174, 111–125.PubMedGoogle Scholar
  30. Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suárez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex: A review. Cerebral Cortex, 10, 220–242.PubMedGoogle Scholar
  31. Cavada, C., & Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. Journal of Comparative Neurology, 287, 422–445.PubMedGoogle Scholar
  32. Chafee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79, 2919–2940.PubMedGoogle Scholar
  33. Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–2940.PubMedGoogle Scholar
  34. Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345–347.PubMedGoogle Scholar
  35. Chen, G., Greengard, P., & Yan, Z. (2004). Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proceedings of the National Academy of Sciences, 101, 2596–2600.Google Scholar
  36. Cheng, K., Hasegawa, T., Saleem, K. S., & Tanaka, K. (1994). Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. Journal of Neurophysiology, 71, 2269–2280.PubMedGoogle Scholar
  37. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. (1993). Ventral intraparietal area of the macaque: Anatomic location and visual response properties. Journal of Neurophysiology, 69, 902–914.PubMedGoogle Scholar
  38. Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10, 910–923.PubMedGoogle Scholar
  39. Compte, A., Constantinidis, C., Tegner, J., Raghavachari, S., Chafee, M. V., Goldman-Rakic, P. S., & Wang, X. J. (2003). Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. Journal of Neurophysiology, 28, 3441–3454.Google Scholar
  40. Connor, C. E., Gallant, J. L., Preddie, D. C., & Van Essen, D. C. (1996). Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of Neurophysiology, 75, 1306–1308.PubMedGoogle Scholar
  41. Connor, C. E., Preddie, D. C., Gallant, J. L., & Van Essen, D. C. (1997). Spatial attention effects in macaque area V4. Journal of Neuroscience, 17, 3201–3214.PubMedGoogle Scholar
  42. Constantinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001a). Coding specificity in cortical microcircuits: A multiple electrode analysis of primate prefrontal cortex. Journal of Neuroscience, 21, 3646–3655.PubMedGoogle Scholar
  43. Constantinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001b). The sensory nature of mnemonic representation in the primate prefrontal cortex. Nature Neuroscience, 4, 311–316.PubMedGoogle Scholar
  44. Constantinidis, C., & Steinmetz, M. A. (1996). Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. Journal of Neurophysiology, 76, 1352–1355.PubMedGoogle Scholar
  45. Constantinidis, C., & Steinmetz, M. A. (2001a). Neuronal responses in area 7a to multiple stimulus displays: I. Neurons encode the location of the salient stimulus. Cerebral Cortex, 11, 581–591.PubMedGoogle Scholar
  46. Constantinidis, C., & Steinmetz, M. A. (2001b). Neuronal responses in area 7a to multiple stimulus displays: II. Responses are suppressed at the cued location. Cerebral Cortex, 11, 592–597.PubMedGoogle Scholar
  47. Cook, E. P., & Maunsell, J. H. (2002). Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. Journal of Neuroscience, 22, 1994–2004.PubMedGoogle Scholar
  48. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.Google Scholar
  49. Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71, 1281–1284.PubMedGoogle Scholar
  50. Crowe, D. A., Chafee, M. V., Averbeck, B. B., & Georgopoulos, A. P. (2004). Neural activity in primate parietal area 7a related to spatial analysis of visual mazes. Cerebral Cortex, 14, 23–34.PubMedGoogle Scholar
  51. Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4, 2051–2062.PubMedGoogle Scholar
  52. Desimone, R., Schein, S. J., Moran, J., & Ungerleider, L. G. (1985). Contour, color and shape analysis beyond the striate cortex. Vision Research, 25, 441–452.PubMedGoogle Scholar
  53. DiCarlo, J. J., & Maunsell, J. H. (2003). Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. Journal of Neurophysiology, 89, 3264–3278.PubMedGoogle Scholar
  54. di Pellegrino, G., & Wise, S. P. (1991). A neurophysiological comparison of three distinct regions of the primate frontal lobe. Brain, 114, 951–978.PubMedGoogle Scholar
  55. di Pellegrino, G., & Wise, S. P. (1993a). Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate. Somatosensory & Motor Research, 10, 245–262.Google Scholar
  56. di Pellegrino, G., & Wise, S. P. (1993b). Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. Journal of Neuroscience, 13, 1227–1243.PubMedGoogle Scholar
  57. Distler, C., Boussaoud, D., Desimone, R., & Ungerleider, L. G. (1993). Cortical connections of inferior temporal area TEO in macaque monkeys. Journal of Comparative Neurology, 334, 125–150.PubMedGoogle Scholar
  58. Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244, 2–8.PubMedGoogle Scholar
  59. Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli: I. A continuum of response selectivity to largefield stimuli. Journal of Neurophysiology, 65, 1329–1345.PubMedGoogle Scholar
  60. Duhamel, J. R., Bremmer, F., Ben Hamed, S., & Graf, W. (1997). Spatial invariance of visual receptive fields in parietal cortex neurons. Nature, 389, 845–848.PubMedGoogle Scholar
  61. Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92.PubMedGoogle Scholar
  62. Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. Journal of Neurophysiology, 79, 126–136.PubMedGoogle Scholar
  63. Dum, R. P., & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience, 11, 667–689.PubMedGoogle Scholar
  64. Dum, R. P., & Strick, P. L. (1993). Cingulate motor areas. In M. Gabriel (Ed.), Neurobiology of cingulate cortex and limbic thalamus (pp. 415–441). Boston: Birkhaüser.Google Scholar
  65. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences23, 475–483.PubMedGoogle Scholar
  66. Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopaminemediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83, 1733–1750.PubMedGoogle Scholar
  67. Erickson, C. A., & Desimone, R. (1999). Responses of macaque perirhinal neurons during and after visual stimulus association learning. Journal of Neuroscience, 19, 10404–10416.PubMedGoogle Scholar
  68. Everling, S., Tinsley, C. J., Gaffan, D., & Duncan, J. (2002). Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience, 5, 671–676.PubMedGoogle Scholar
  69. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.PubMedGoogle Scholar
  70. Ferrera, V. P., Nealey, T. A., & Maunsell, J. H. (1992). Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature, 358, 756–761.PubMedGoogle Scholar
  71. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.PubMedGoogle Scholar
  72. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2002). Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior. Journal of Neurophysiology, 88, 929–941.PubMedGoogle Scholar
  73. Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). A comparison of primate prefrontal and inferior temporal cortices during visual categorization. Journal of Neuroscience, 23, 5235–5246.PubMedGoogle Scholar
  74. Friedman, H. R., & Goldman-Rakic, P. S. (1994). Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. Journal of Neuroscience, 14, 2775–2788.PubMedGoogle Scholar
  75. Frith, C. D., Friston, K. J., Liddle, P. F., & Frackowiak, R. S. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society of London: Series B, 244, 241–246.Google Scholar
  76. Fujii, N., & Graybiel, A. M. (2003). Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science, 301, 1246–1249.PubMedGoogle Scholar
  77. Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360, 343–346.PubMedGoogle Scholar
  78. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.PubMedGoogle Scholar
  79. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.” Journal of Neuroscience, 13, 1479–1497.PubMedGoogle Scholar
  80. Fuster, J. M. (2001). The prefrontal cortex—an update: Time is of the essence. Neuron, 30, 319–333.PubMedGoogle Scholar
  81. Fuster, J. M. (2003). Cortex and mind: Unifying cognition. Oxford: Oxford University Press.Google Scholar
  82. Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173, 652–654.PubMedGoogle Scholar
  83. Fuster, J. M., & Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Research, 61, 79–91.PubMedGoogle Scholar
  84. Fuster, J. M., Bodner, M., & Kroger, J. K. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex. Nature, 405, 347–351.PubMedGoogle Scholar
  85. Fuster, J. M., & Jervey, J. P. (1981). Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science, 212, 952–955.PubMedGoogle Scholar
  86. Fuster, J. M., & Jervey, J. P. (1982). Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. Journal of Neuroscience, 2, 361–375.PubMedGoogle Scholar
  87. Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W., & Van Essen, D. C. (1996). Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. Journal of Neurophysiology, 76, 2718–2739.PubMedGoogle Scholar
  88. Galletti, C., Battaglini, P. P., & Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European Journal of Neuroscience, 7, 2486–2501.PubMedGoogle Scholar
  89. Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Journal of Comparative Neurology, 277, 195–213.PubMedGoogle Scholar
  90. Gnadt, J. W., & Andersen, R. A. (1988). Memory related motor planning activity in posterior parietal cortex of macaque. Experimental Brain Research, 70,216–2200.Google Scholar
  91. Godschalk, M., Mitz, A. R., van Duin, B., & van der Burg, H. (1995). Somatotopy of monkey premotor cortex examined with microstimulation. Neuroscience Research, 23, 269–279.PubMedGoogle Scholar
  92. Goldman-Rakic, P. S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137–156.PubMedGoogle Scholar
  93. Goldman-Rakic, P. S. (1998). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex (pp. 87–102). Oxford: Oxford University Press.Google Scholar
  94. Goldman-Rakic, P. S., Bates, J. F., & Chafee, M. V. (1992). The prefrontal cortex and internally generated motor acts. Current Opinion in Neurobiology, 2, 830–835.PubMedGoogle Scholar
  95. Goldman-Rakic, P. S., & Porrino, L. J. (1985). The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. Journal of Comparative Neurology, 242, 535–560.PubMedGoogle Scholar
  96. Gottlieb, J. P., Kusunoki, M., & Goldberg, M. E. (1998). The representation of visual salience in monkey parietal cortex. Nature, 391, 481–484.PubMedGoogle Scholar
  97. Gross, C. G., Bender, D. B., & Gerstein, G. L. (1979). Activity of inferior temporal neurons in behaving monkeys. Neuropsychologia, 17, 215–229.PubMedGoogle Scholar
  98. Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35, 96–111.PubMedGoogle Scholar
  99. Grunewald, A., Linden, J. F., & Andersen, R. A. (1999). Responses to auditory stimuli in macaque lateral intraparietal area: I. Effects of training. Journal of Neurophysiology, 82, 330–342.PubMedGoogle Scholar
  100. Haber, S. N., Kunishio, K., Mizobuchi, M., & Lynd-Balta, E. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. Journal of Neuroscience, 15, 4851–4867.PubMedGoogle Scholar
  101. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999). Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research, 817, 45–58.PubMedGoogle Scholar
  102. Hadj-Bouziane, F., Meunier, M., & Boussaoud, D. (2003). Conditional visuo-motor learning in primates: A key role for the basal ganglia. Journal of Physiology, 97, 567–579.PubMedGoogle Scholar
  103. Hadland, K. A., Rushworth, M. F., Gaffan, D., & Passingham, R. E. (2003). The anterior cingulate and reward-guided selection of actions. Journal of Neurophysiology, 89, 1161–1164.PubMedGoogle Scholar
  104. Haenny, P. E., Maunsell, J. H., & Schiller, P. H. (1988). State dependent activity in monkey visual cortex: II. Retinal and extraretinal factors in V4. Experimental Brain Research, 69, 245–259.Google Scholar
  105. Hampson, R. E., Pons, T. P., Stanford, T. R., & Deadwyler, S. A. (2004). Categorization in the monkey hippocampus: A possible mechanism for encoding information into memory. Proceedings of the National Academy of Sciences, 101, 3184–3189.Google Scholar
  106. Hatanaka, N., Tokuno, H., Hamada, I., Inase, M., Ito, Y., Imanishi, M., Hasegawa, N., Akazawa, T., Nambu, A., & Takada, M. (2003). Thalamocortical and intracortical connections of monkey cingulate motor areas. Journal of Comparative Neurology, 462, 121–138.PubMedGoogle Scholar
  107. Heuer, H. W., & Britten, K. H. (2004). Optic flow signals in extrastriate area MST: Comparison of perceptual and neuronal sensitivity. Journal of Neurophysiology, 91, 1314–1326.PubMedGoogle Scholar
  108. Hikosaka, K., & Watanabe, M. (2000). Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cerebral Cortex, 10, 263–271.PubMedGoogle Scholar
  109. Hikosaka, O., Sakamoto, M., & Usui, S. (1989a). Functional properties of monkey caudate neurons: I. Activities related to saccadic eye movements. Journal of Neurophysiology, 61, 780–798.PubMedGoogle Scholar
  110. Hikosaka, O., Sakamoto, M., & Usui, S. (1989b). Functional properties of monkey caudate neurons: III. Activities related to expectation of target and reward. Journal of Neurophysiology, 61, 814–832.PubMedGoogle Scholar
  111. Hinkle, D. A., & Connor, C. E. (2002). Three-dimensional orientation tuning in macaque area V4. Nature Neuroscience, 5, 665–670.PubMedGoogle Scholar
  112. Holscher, C., & Rolls, E. T. (2002). Perirhinal cortex neuronal activity is actively related to working memory in the macaque. Neural Plasticity, 9, 41–51.PubMedGoogle Scholar
  113. Holscher, C., Rolls, E. T., & Xiang, J. (2003). Perirhinal cortex neuronal activity related to long-term familiarity memory in the macaque. European Journal of Neuroscience, 18,2037–20466.PubMedGoogle Scholar
  114. Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5, 95–110.PubMedGoogle Scholar
  115. Hsiao, S. S., O’Shaughnessy, D. M., & Johnson, K. O. (1993). Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. Journal of Neurophysiology, 70, 444–447.PubMedGoogle Scholar
  116. Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1986). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. Journal of Comparative Neurology, 253, 415–439.PubMedGoogle Scholar
  117. Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1987). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: II. Cortical connections. Journal of Comparative Neurology, 265,332–3611.PubMedGoogle Scholar
  118. Iba, M., & Sawaguchi, T. (2003). Involvement of the dorsolateral prefrontal cortex of monkeys in visuospatial target selection. Journal of Neurophysiology, 89, 587–599.PubMedGoogle Scholar
  119. Ifuku, H., Hirata, S., Nakamura, T., & Ogawa, H. (2003). Neuronal activities in the monkey primary and higher-order gustatory cortices during a taste discrimination delayed GO/NOGO task and after reversal. Neuroscience Research, 47, 161–175.PubMedGoogle Scholar
  120. Inoue, M., Mikami, A., Ando, I., & Tsukada, H. (2004). Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cerebral Cortex, 14, 106–119.PubMedGoogle Scholar
  121. Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex. Journal of Neuroscience, 23, 8002–8012.PubMedGoogle Scholar
  122. Ito, M., Tamura, H., Fujita, I., & Tanaka, K. (1995). Size and position invariance of neuronal responses in monkey inferotemporal cortex. Journal of Neurophysiology, 73, 218–226.PubMedGoogle Scholar
  123. Jacobsen, C. F. (1936). Studies of cerebral function in primates. Comparative Psychology Monogaphs, 13, 1–68.Google Scholar
  124. Jagadeesh, B., Chelazzi, L., Mishkin, M., & Desimone, R. (2001). Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. Journal of Neurophysiology, 86, 290–303.PubMedGoogle Scholar
  125. Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474.PubMedGoogle Scholar
  126. Jones, E. G., Dell’Anna, M. E., Molinari, M., Rausell, E., & Hashikawa, T. (1995). Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. Journal of Comparative Neurology, 362, 153–170.PubMedGoogle Scholar
  127. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.PubMedGoogle Scholar
  128. Jouffrais, C., & Boussaoud, D. (1999). Neuronal activity related to eye-hand coordination in the primate premotor cortex. Experimental Brain Research, 128, 205–209.Google Scholar
  129. Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences, 97, 11793–11799.Google Scholar
  130. Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1, 411–416.PubMedGoogle Scholar
  131. Kawamura, K., & Naito, J. (1984). Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques. Neuroscience Research, 1, 89–103.PubMedGoogle Scholar
  132. Kermadi, I., & Joseph, J. P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74, 911–933.PubMedGoogle Scholar
  133. Koch, C., & Fuster, J. M. (1989). Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Experimental Brain Research, 76, 292–306.Google Scholar
  134. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185.PubMedGoogle Scholar
  135. Komatsu, H., & Wurtz, R. H. (1988). Relation of cortical areas MT and MST to pursuit eye movements: I. Localization and visual properties of neurons. Journal of Neurophysiology, 60, 580–603.PubMedGoogle Scholar
  136. Kosaki, H., Hashikawa, T., He J., & Jones, E. G. (1997). Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. Journal of Comparative Neurology, 386, 304–316.PubMedGoogle Scholar
  137. Koski, L., & Paus, T. (2000). Functional connectivity of the anterior cingulate cortex within the human frontal lobe: A brain-mapping meta-analysis. Experimental Brain Research, 133, 55–65.Google Scholar
  138. Kritzer, M. F., & Goldman-Rakic, P. S. (1995). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 359, 131–143.PubMedGoogle Scholar
  139. Leon, M. L., & Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24, 415–425.PubMedGoogle Scholar
  140. Lisman, J. E., Fellous, J. M., & Wang, X. J. (1998). A role for NMDAreceptor channels in working memory. Nature Neuroscience, 1, 273–275.PubMedGoogle Scholar
  141. Liu, Z., & Richmond, B. J. (2000). Response differences in monkey TE and perirhinal cortex: Stimulus association related to reward schedules. Journal of Neurophysiology, 83, 1677–1692.PubMedGoogle Scholar
  142. Llinas, R. R., Leznik, E., & Urbano, F. J. (2002). Temporal binding via cortical coincidence detection of specific and nonspecific thala mocortical inputs: A voltage-dependent dye-imaging study in mouse brain slices. Proceedings of the National Academy of Sciences, 99, 449–454.Google Scholar
  143. Llinas, R. R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philosophical Transactions of the Royal Society of London: Series B, 353, 1841–1849.Google Scholar
  144. Logothetis, N. K., & Pauls, J. (1995). Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cerebral Cortex, 5, 270–288.PubMedGoogle Scholar
  145. Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552–563.PubMedGoogle Scholar
  146. Lu, M. T., Preston, J. B., & Strick, P. L. (1994). Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. Journal of Comparative Neurology, 341, 375–392.PubMedGoogle Scholar
  147. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.PubMedGoogle Scholar
  148. Luppino, G., Matelli, M., Camarda, R. M., Gallese, V., & Rizzolatti, G. (1991). Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey. Journal of Comparative Neurology, 311, 463–482.PubMedGoogle Scholar
  149. Lynch, J. C., Mountcastle, V. B., Talbot, W. H., & Yin, T. C. (1977). Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology, 40, 362–389.PubMedGoogle Scholar
  150. MacDonald, A. W., III, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.PubMedGoogle Scholar
  151. Markowitsch, H. J., Emmans, D., Irle, E., Streicher, M., & Preilowski, B. (1985). Cortical and subcortical afferent connections of the primate’s temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets. Journal of Comparative Neurology, 242, 425–458.PubMedGoogle Scholar
  152. Matelli, M., Luppino, G., & Rizzolatti, G. (1991). Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. Journal of Comparative Neurology, 311, 445–462.PubMedGoogle Scholar
  153. Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 301, 229–232.PubMedGoogle Scholar
  154. Mazzoni, P., Bracewell, R. M., Barash, S., & Andersen, R. A. (1996). Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. Journal of Neurophysiology, 75, 1233–1241.PubMedGoogle Scholar
  155. McGuire, P. K., Bates, J. F., & Goldman-Rakic, P. S. (1991). Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cerebral Cortex, 1, 390–407.PubMedGoogle Scholar
  156. Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2001). Effects of optic flow in motor cortex and area 7a. Journal of Neurophysiology, 86, 1937–1954.PubMedGoogle Scholar
  157. Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2004). Neural responses in motor cortex and area 7a to real and apparent motion. Experimental Brain Research, 154, 291–307.Google Scholar
  158. Messier, J., & Kalaska, J. F. (2000). Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorizeddelay reaching task. Journal of Neurophysiology, 84, 152–165.PubMedGoogle Scholar
  159. Messinger, A., Squire, L. R., Zola, S. M., & Albright, T. D. (2001). Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proceedings of the National Academy of Sciences, 98, 12239–12244.Google Scholar
  160. Meunier, M., Bachevalier, J., & Mishkin, M. (1997). Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia, 35, 999–1015.PubMedGoogle Scholar
  161. Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia “projections” to the prefrontal cortex of the primate. Cerebral Cortex, 12, 926–935.PubMedGoogle Scholar
  162. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedGoogle Scholar
  163. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16, 5154–5167.PubMedGoogle Scholar
  164. Miller, E. K., Li, L., & Desimone, R. (1991). A neural mechanism for working and recognition memory in inferior temporal cortex. Science, 254, 1377–1379.PubMedGoogle Scholar
  165. Miller, E. K., Li L., & Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. Journal of Neuroscience, 13, 1460–1478.PubMedGoogle Scholar
  166. Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 100–110.Google Scholar
  167. Mitz, A. R., & Wise, S. P. (1987). The somatotopic organization of the supplementary motor area: Intracortical microstimulation mapping. Journal of Neuroscience, 7, 1010–1021.PubMedGoogle Scholar
  168. Miyashita, Y., & Chang, H. S. (1988). Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature, 331, 68–70.PubMedGoogle Scholar
  169. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–784.PubMedGoogle Scholar
  170. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience, 14, 2178–2189.PubMedGoogle Scholar
  171. Motter, B. C., & Mountcastle, V. B. (1981). The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience, 1, 3–26.PubMedGoogle Scholar
  172. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., & Acuna, C. (1975). Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. Journal of Neurophysiology, 38, 871–908.PubMedGoogle Scholar
  173. Nakamura, K., & Colby, C. L. (2000). Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. Journal of Neurophysiology, 84, 677–692.PubMedGoogle Scholar
  174. Nakamura, K., & Kubota, K. (1995). Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. Journal of Neurophysiology, 74, 162–178.PubMedGoogle Scholar
  175. Nakamura, K., Sakai, K., & Hikosaka, O. (1998). Neuronal activity in medial frontal cortex during learning of sequential procedures. Journal of Neurophysiology, 80, 2671–2687.PubMedGoogle Scholar
  176. Naya, Y., Yoshida, M., & Miyashita, Y. (2001). Backward spreading of memory-retrieval signal in the primate temporal cortex. Science, 291, 661–664.PubMedGoogle Scholar
  177. Newsome, W. T., Mikami, A., & Wurtz, R. H. (1986). Motion selectivity in macaque visual cortex: III. Psychophysics and physiology of apparent motion. Journal of Neurophysiology, 55, 1340–1351.PubMedGoogle Scholar
  178. Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.PubMedGoogle Scholar
  179. Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37, 149–157.PubMedGoogle Scholar
  180. Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences, 101, 7457–7462.Google Scholar
  181. Niki, H., & Watanabe, M. (1976). Cingulate unit activity and delayed response. Brain Research, 110, 381–386.PubMedGoogle Scholar
  182. Olson, C. R., & Gettner, S. N. (1995). Object-centered direction selectivity in the macaque supplementary eye field. Science, 269, 985–988.PubMedGoogle Scholar
  183. Op De Beeck, H., & Vogels, R. (2000). Spatial sensitivity of macaque inferior temporal neurons. Journal of Comparative Neurology, 426, 505–518.PubMedGoogle Scholar
  184. Ó Scalaidhe, S., Wilson, F. A., & Goldman-Rakic, P. S. (1997). Areal segregation of face-processing neurons in prefrontal cortex. Science, 278, 1135–1138.PubMedGoogle Scholar
  185. Passingham, R. (1993). The frontal lobes and voluntary action. Oxford: Oxford University Press.Google Scholar
  186. Pasupathy, A., & Connor, C. E. (2001). Shape representation in area V4: Position-specific tuning for boundary conformation. Journal of Neurophysiology, 86, 2505–2519.PubMedGoogle Scholar
  187. Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417–424.PubMedGoogle Scholar
  188. Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70, 453–469.PubMedGoogle Scholar
  189. Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., & Andersen, R. A. (2002). Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience, 5, 805–811.PubMedGoogle Scholar
  190. Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133, 44–54.Google Scholar
  191. Phillips, J. R., Johnson, K. O., & Hsiao, S. S. (1988). Spatial pattern representation and transformation in monkey somatosensory cortex. Proceedings of the National Academy of Sciences, 85, 1317–1321.Google Scholar
  192. Phinney, R. E., & Siegel, R. M. (2000). Speed selectivity for optic flow in area 7a of the behaving macaque. Cerebral Cortex, 10, 413–421.PubMedGoogle Scholar
  193. Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400, 233–238.PubMedGoogle Scholar
  194. Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: Conflict, target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain (pp. 401–423). Cambridge, MA: MIT Press.Google Scholar
  195. Powell, K. D., & Goldberg, M. E. (2000). Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. Journal of Neurophysiology, 84, 301–310.PubMedGoogle Scholar
  196. Preuss, T. M., & Goldman-Rakic, P. S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. Journal of Comparative Neurology, 310, 475–506.PubMedGoogle Scholar
  197. Procyk, E., & Joseph, J. P. (2001). Characterization of serial order encoding in the monkey anterior cingulate sulcus. European Journal of Neuroscience, 14, 1041–1046.PubMedGoogle Scholar
  198. Procyk, E., Tanaka, Y. L., & Joseph, J. P. (2000). Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nature Neuroscience, 3, 502–508.PubMedGoogle Scholar
  199. Pucak, M. L., Levitt, J. B., Lund, J. S., & Lewis, D. A. (1996). Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. Journal of Comparative Neurology, 376, 614–630.PubMedGoogle Scholar
  200. Quintana, J., & Fuster, J. M. (1992). Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport, 3, 721–724.PubMedGoogle Scholar
  201. Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L., Lagae, L., & Orban, G. A. (1997). Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque. NeuroReport, 8, 2803–2808.PubMedGoogle Scholar
  202. Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.PubMedGoogle Scholar
  203. Rainer, G., & Miller, E. K. (2002). Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. European Journal of Neuroscience, 15, 1244–1254.PubMedGoogle Scholar
  204. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.PubMedGoogle Scholar
  205. Rauschecker, J. P., Tian, B., & Hauser, M. (1995). Processing of complex sounds in the macaque nonprimary auditory cortex. Science, 268, 111–114.PubMedGoogle Scholar
  206. Richmond, B. J., Wurtz, R. H., & Sato, T. (1983). Visual responses of inferior temporal neurons in awake rhesus monkey. Journal of Neurophysiology, 50, 1415–1432.PubMedGoogle Scholar
  207. Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron, 31, 889–901.PubMedGoogle Scholar
  208. Rolls, E. T. (2002). The functions of the orbitofrontal cortex. In R. T. Knight (Ed.), Principles of frontal lobe function (pp. 354–375). Oxford: Oxford University Press.Google Scholar
  209. Rolls, E. T., Aggelopoulos, N. C., & Zheng, F. (2003). The receptive fields of inferior temporal cortex neurons in natural scenes. Journal of Neuroscience, 23, 339–348.PubMedGoogle Scholar
  210. Romanski, L. M., Bates, J. F., & Goldman-Rakic, P. S. (1999). Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 403, 141–157.PubMedGoogle Scholar
  211. Romanski, L. M., Giguere, M., Bates, J. F., & Goldman-Rakic, P. S. (1997). Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 379, 313–332.PubMedGoogle Scholar
  212. Romanski, L. M., & Goldman-Rakic, P. S. (2002). An auditory domain in primate prefrontal cortex. Nature Neuroscience, 5, 15–16.PubMedGoogle Scholar
  213. Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2, 1131–1136.PubMedGoogle Scholar
  214. Romo, R., Brody, C. D., Hernandez, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399, 470–473.PubMedGoogle Scholar
  215. Romo, R., Hernandez, A., Zainos, A., Lemus, L., & Brody, C. D. (2002). Neuronal correlates of decision-making in secondary somatosensory cortex. Nature Neuroscience, 5, 1217–1225.PubMedGoogle Scholar
  216. Rosenkilde, C. E., Bauer, R. H., & Fuster, J. M. (1981). Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Research, 209, 375–394.PubMedGoogle Scholar
  217. Rouiller, E. M., Tanne, J., Moret, V., & Boussaoud, D. (1999). Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: A multiple retrograde tracing study. Journal of Comparative Neurology, 409, 131–152.PubMedGoogle Scholar
  218. Rushworth, M. F., Hadland, K. A., Gaffan, D., & Passingham, R. E. (2003). The effect of cingulate cortex lesions on task switching and working memory. Journal of Cognitive Neuroscience, 15, 338–353.PubMedGoogle Scholar
  219. Russo, G. S., & Bruce, C. J. (1996). Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Journal of Neurophysiology, 76, 825–848.PubMedGoogle Scholar
  220. Sakai, K., & Miyashita, Y. (1991). Neural organization for the longterm memory of paired associates. Nature, 354, 152–155.PubMedGoogle Scholar
  221. Salinas, E. (2004). Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. Journal of Neuroscience, 24, 1113–1118.PubMedGoogle Scholar
  222. Sato, N., & Nakamura, K. (2003). Visual response properties of neurons in the parahippocampal cortex of monkeys. Journal of Neurophysiology, 90, 876–886.PubMedGoogle Scholar
  223. Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251, 947–950.PubMedGoogle Scholar
  224. Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71, 515–528.PubMedGoogle Scholar
  225. Schlag, J., & Schlag-Rey, M. (1987). Evidence for a supplementary eye field. Journal of Neurophysiology, 57, 179–200.PubMedGoogle Scholar
  226. Schlag-Rey, M., Amador, N., Sanchez, H., & Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature, 390, 398–401.PubMedGoogle Scholar
  227. Schultz, W. (2001). Reward signaling by dopamine neurons. Neuroscientist, 7, 293–302.PubMedGoogle Scholar
  228. Schwartz, E. L., Desimone, R., Albright, T. D., & Gross, C. G. (1983). Shape recognition and inferior temporal neurons. Proceedings of the National Academy of Sciences, 80, 5776–5778.Google Scholar
  229. Seamans, J. K., Durstewitz, D., Christie, B. R., Stevens, C. F., & Sejnowski, T. J. (2001). Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proceedings of the National Academy of Sciences, 98, 301–306.Google Scholar
  230. Selemon, L. D., & Goldman-Rakic, P. S. (1985). Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. Journal of Neuroscience, 5, 776–794.PubMedGoogle Scholar
  231. Selemon, L. D., & Goldman-Rakic, P. S. (1988). Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior. Journal of Neuroscience, 8, 4049–4068.PubMedGoogle Scholar
  232. Sereno, A. B., & Maunsell, J. H. (1998). Shape selectivity in primate lateral intraparietal cortex. Nature, 395, 500–503.PubMedGoogle Scholar
  233. Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86, 1916–1936.PubMedGoogle Scholar
  234. Shallice, T. (1988). From neuropsychology to mental structure. Cambridge: Cambridge University Press.Google Scholar
  235. Sheinberg, D. L., & Logothetis, N. K. (1997). The role of temporal cortical areas in perceptual organization. Proceedings of the National Academy of Sciences, 94, 3408–3413.Google Scholar
  236. Shibutani, H., Sakata, H., & Hyvarinen, J. (1984). Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Experimental Brain Research, 55, 1–8.Google Scholar
  237. Shidara, M., & Richmond, B. J. (2002). Anterior cingulate: Single neuronal signals related to degree of reward expectancy. Science, 296, 1709–1711.PubMedGoogle Scholar
  238. Shima, K., Mushiake, H., Saito, N., & Tanji, J. (1996). Role for cells in the presupplementary motor area in updating motor plans. Proceedings of the National Academy of Sciences, 93, 8694–8698.Google Scholar
  239. Shima, K., & Tanji, J. (1998). Role for cingulate motor area cells in voluntary movement selection based on reward. Science, 282, 1335–1338.PubMedGoogle Scholar
  240. Sigala, N., & Logothetis, N. K. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415, 318–320.PubMedGoogle Scholar
  241. Snyder, L. H., Batista, A. P., & Andersen, R. A. (1997). Coding of intention in the posterior parietal cortex. Nature, 386, 167–170.PubMedGoogle Scholar
  242. Snyder, L. H., Grieve, K. L., Brotchie, P., & Andersen, R. A. (1998). Separate body- and world-referenced representations of visual space in parietal cortex. Nature, 394, 887–891.PubMedGoogle Scholar
  243. Steinmetz, M. A., Connor, C. E., Constantinidis, C., & McLaughlin, J. R. (1994). Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. Journal of Neurophysiology, 72, 1020–1023.PubMedGoogle Scholar
  244. Steinmetz, M. A., & Constantinidis, C. (1995). Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cerebral Cortex, 5, 448–456.PubMedGoogle Scholar
  245. Steinmetz, M. A., Motter, B. C., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field. Journal of Neuroscience, 7, 177–191.PubMedGoogle Scholar
  246. Stoet, G., & Snyder, L. H. (2004). Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron, 42, 1003–1012.PubMedGoogle Scholar
  247. Stuphorn, V., Taylor, T. L., & Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408, 857–860.PubMedGoogle Scholar
  248. Super, H., Spekreijse, H., & Lamme, V. A. (2001). A neural correlate of working memory in the monkey primary visual cortex. Science, 293, 120–124.PubMedGoogle Scholar
  249. Suzuki, W. A., Miller, E. K., & Desimone, R. (1997). Object and place memory in the macaque entorhinal cortex. Journal of Neurophysiology, 78, 1062–1081.PubMedGoogle Scholar
  250. Takada, M., Nambu, A., Hatanaka, N., Tachibana, Y., Miyachi, S., Taira, M., & Inase, M. (2004). Organization of prefrontal outflow toward frontal motor-related areas in macaque monkeys. European Journal of Neuroscience, 19, 3328–3342.PubMedGoogle Scholar
  251. Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.PubMedGoogle Scholar
  252. Tanibuchi, I., & Goldman-Rakic, P. S. (2003). Dissociation of spatial-, object-, and sound-coding neurons in the mediodorsal nucleus of the primate thalamus. Journal of Neurophysiology, 89, 1067–1077.PubMedGoogle Scholar
  253. Tanji, J., & Shima, K. (1994). Role for supplementary motor area cells in planning several movements ahead. Nature, 371, 413–416.PubMedGoogle Scholar
  254. Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K. P. (2002). Neural mechanisms of saccadic suppression. Science, 295, 2460–2462.PubMedGoogle Scholar
  255. Toth, L. J., & Assad, J. A. (2002). Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature, 415, 165–168.PubMedGoogle Scholar
  256. Tovee, M. J., Rolls, E. T., & Azzopardi, P. (1994). Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. Journal of Neurophysiology, 72, 1049–1060.PubMedGoogle Scholar
  257. Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 398, 704–708.PubMedGoogle Scholar
  258. Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–541.PubMedGoogle Scholar
  259. Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences, 95, 883–890.Google Scholar
  260. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (549–586). Cambridge, MA: MIT Press.Google Scholar
  261. Vaadia, E., Benson, D. A., Hienz, R. D., & Goldstein, M. H., Jr. (1986). Unit study of monkey frontal cortex: Active localization of auditory and of visual stimuli. Journal of Neurophysiology, 56, 934–952.PubMedGoogle Scholar
  262. Walker, A. E. (1940). A cytoarchitectural study of the prefrontal area of the macaque monkey. Journal of Comparative Neurology, 73, 59–86.Google Scholar
  263. Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411, 953–956.PubMedGoogle Scholar
  264. Wallis, J. D., Dias, R., Robbins, T. W., & Roberts, A. C. (2001). Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. European Journal of Neuroscience, 13, 1797–1808.PubMedGoogle Scholar
  265. Wallis, J. D., & Miller, E. K. (2003a). From rule to response: Neuronal processes in the premotor and prefrontal cortex. Journal of Neurophysiology, 90, 1790–1806.PubMedGoogle Scholar
  266. Wallis, J. D., & Miller, E. K. (2003b). Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. European Journal of Neuroscience, 18, 2069–2081.PubMedGoogle Scholar
  267. Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24, 455–463.PubMedGoogle Scholar
  268. Wang, X. J., Tegner, J., Constantinidis, C., & Goldman-Rakic, P. S. (2004). Division of labor among distinct inhibitory neurons in a cortical microcircuit of working memory. Proceedings of the National Academy of Sciences, 101, 1368–1373.Google Scholar
  269. Wang, Y., Matsuzaka, Y., Shima, K., & Tanji, J. (2004). Cingulate cortical cells projecting to monkey frontal eye field and primary motor cortex. NeuroReport, 15, 1559–1563.PubMedGoogle Scholar
  270. Wang, Y., Shima, K., Isoda, M., Sawamura, H., & Tanji, J. (2002). Spatial distribution and density of prefrontal cortical cells projecting to three sectors of the premotor cortex. NeuroReport, 13, 1341–1344.PubMedGoogle Scholar
  271. Wang, Y., Shima, K., Sawamura, H., & Tanji, J. (2001). Spatial distribution of cingulate cells projecting to the primary, supplementary, and pre-supplementary motor areas: A retrograde multiple labeling study in the macaque monkey. Neuroscience Research, 39 39–49.PubMedGoogle Scholar
  272. Watanabe, Y., & Funahashi, S. (2004a). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses: I. Cue-, delay-, and response-period activity. Journal of Neurophysiology, 92, 1738–1755.PubMedGoogle Scholar
  273. Watanabe, Y., & Funahashi, S. (2004b). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses: II. Activity encoding visual versus motor signal. Journal of Neurophysiology, 92, 1756–1769.PubMedGoogle Scholar
  274. Watanabe-Sawaguchi, K., Kubota, K., & Arikuni, T. (1991). Cytoarchitecture and intrafrontal connections of the frontal cortex of the brain of the hamadryas baboon (Papio hamadryas). Journal of Comparative Neurology, 311, 108–133.PubMedGoogle Scholar
  275. Webster, M. J., Bachevalier, J., & Ungerleider, L. G. (1994). Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cerebral Cortex, 4, 470–483.PubMedGoogle Scholar
  276. White, I. M., & Wise, S. P. (1999). Rule-dependent neuronal activity in the prefrontal cortex. Experimental Brain Research, 126, 315–335.Google Scholar
  277. Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376, 572–575.PubMedGoogle Scholar
  278. Williams, S. M., & Goldman-Rakic, P. S. (1993). Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cerebral Cortex, 3, 199–222.PubMedGoogle Scholar
  279. Wilson, F. A., Ó Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.PubMedGoogle Scholar
  280. Wise, S. P., Murray, E. A., & Gerfen, C. R. (1996). The frontal cortexbasal ganglia system in primates. Critical Reviews in Neurobiology, 10, 317–356.PubMedGoogle Scholar
  281. Yakovlev, V., Fusi, S., Berman, E., & Zohary, E. (1998). Inter-trial neuronal activity in inferior temporal cortex: A putative vehicle to generate long-term visual associations. Nature Neuroscience, 1, 310–317.PubMedGoogle Scholar
  282. Yang, C. R., & Seamans, J. K. (1996). Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration. Journal of Neuroscience, 16, 1922–1935.PubMedGoogle Scholar
  283. Zeki, S. M. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology, 277, 273–290.PubMedGoogle Scholar
  284. Zhou, Y. D., & Fuster, J. M. (1996). Mnemonic neuronal activity in somatosensory cortex. Proceedings of the National Academy of Sciences, 93, 10533–10537.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  1. 1.Department of Neurobiology and AnatomyWake Forest University School of MedicineWinston-Salem
  2. 2.Inserm U371Institut Fédératif des Neurosciences de LyonBronFrance

Personalised recommendations