Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Cognitive, Affective, & Behavioral Neuroscience
  3. Article
Not all synaesthetes are created equal: Projector versus associator synaesthetes
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Apparent physical brightness of graphemes is altered by their synaesthetic colour in grapheme-colour synaesthetes

18 November 2020

Kyuto Uno & Kazuhiko Yokosawa

A persistent memory advantage is specific to grapheme-colour synaesthesia

26 February 2020

Katrin Lunke & Beat Meier

Long-term versus short-term consistency in the grapheme–colour synaesthesia: Grapheme–colour pairings can change in adulthood

20 March 2019

Jan Chromý, Marianna Borůvková, … Tereza Sudzinová

Colours + Numbers differs from colours of numbers: cognitive and visual illusions in grapheme-colour synaesthesia

08 March 2019

Mariagrazia Ranzini & Luisa Girelli

A single system account of enhanced recognition memory in synaesthesia

14 January 2020

Nicolas Rothen, Christopher J. Berry, … Jamie Ward

Grapheme-color associations can transfer to novel graphemes when synesthetic colors function as grapheme “discriminating markers”

06 April 2020

Kyuto Uno, Michiko Asano, … Kazuhiko Yokosawa

Challenge of the Ineffable: Concerning Mechner’s “a Behavioral and Biological Analysis of Aesthetics”

22 August 2018

Philip N. Hineline

Two-Stage Processing of Aesthetic Information in the Human Brain Revealed by Neural Adaptation Paradigm

07 June 2018

Miho Iwasaki, Yasuki Noguchi & Ryusuke Kakigi

Tracking two pleasures

02 January 2020

Aenne A. Brielmann & Denis G. Pelli

Download PDF
  • Published: September 2004

Not all synaesthetes are created equal: Projector versus associator synaesthetes

  • Mike J. Dixon1,
  • Daniel Smilek1 &
  • Philip M. Merikle1 

Cognitive, Affective, & Behavioral Neuroscience volume 4, pages 335–343 (2004)Cite this article

  • 3101 Accesses

  • 232 Citations

  • 7 Altmetric

  • Metrics details

Abstract

In synaesthesia, ordinary stimuli elicit extraordinary experiences. When grapheme-color synaesthetes view black text, each grapheme elicits a photism—a highly specific experience of color. Importantly, some synaesthetes (projectors) report experiencing their photisms in external space, whereas other synaesthetes (associators) report experiencing their photisms “in the mind’s eye.” We showed that projectors and associators can be differentiated not only by their subjective reports, but also by their performance on Stroop tasks. Digits were presented in colors that were either congruent or incongruent with the synaesthetes’ photisms. The synaesthetes named either the video colors of the digits or the colors of the photisms elicited by the digits. The results revealed systematic differences in the patterns of Stroop interference between projectors and associators. Converging evidence from first-person reports and third-person objective measures of Stroop interference establish the projector/ associator distinction as an important individual difference in grapheme-color synaesthesia.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 5, 544–554.

    Article  Google Scholar 

  • Baron-Cohen, S., Burt, L., Smith-Laittan, F., Harrison, J., & Bolton, P. (1996). Synaesthesia: Prevalence and familiarity. Perception, 25, 1073–1079.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Harrison, J., Goldstein, L. H., & Wyke, M. (1993). Coloured speech perception: Is synaesthesia what happens when modularity breaks down? Perception, 22, 419–426.

    Article  PubMed  Google Scholar 

  • Blake, R., Palmeri, T. J., Marois, R., & Chai, Y.-K. (in press). On the perceptual reality of synesthetic colors. In L. Robertson & N. Sagiv (Eds.), Synesthesia: Perspectives from cognitive neuroscience. New York: Oxford University Press.

  • Chao, L. L., & Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about colors. Journal of Cognitive Neuroscience, 11, 25–35.

    Article  PubMed  Google Scholar 

  • Cohen, L., & Dehaene, S. (1995). Number processing in pure alexia: The effect of hemispheric asymmetries and task demands. Neuro-Case, 1, 121–137.

    Google Scholar 

  • Cytowic, R. E. (1993). The man who tasted shapes. New York: Warner.

    Google Scholar 

  • Cytowic, R. E. (2003). Synesthesia. A union of the senses. (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual pathways. Journal of Experimental Psychology: General, 129, 481–507.

    Article  Google Scholar 

  • Dixon, M. J., Smilek, D., Cudahy, C., & Merikle, P. M. (2000). Five plus two equals yellow. Nature, 406, 365.

    Article  PubMed  Google Scholar 

  • Dixon, M. J., Smilek, D., Wagar, B. M., & Merikle, P. M. (2004). Grapheme-color synaesthesia: When 7 is yellow and D is blue. In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), Handbook of multisensory processes (pp. 837–849). Cambridge, MA: MIT Press.

    Google Scholar 

  • Elias, L. J., Saucier, D. M., Hardie, C., & Sarty, G. E. (2003). Dissociating semantic and perceptual components of synaesthesia: Behavioural and functional neuroanatomical investigations. Cognitive Brain Research, 16, 232–237.

    Article  PubMed  Google Scholar 

  • Gatti, S. V., & Egeth, H. E. (1978). Failure of spatial selectivity in vision. Bulletin of the Psychonomic Society, 11, 181–184.

    Google Scholar 

  • Grossenbacher, P. G., & Lovelace, C. T. (2001). Mechanisms of synesthesia: Cognitive and physiological constraints. Trends in Cognitive Sciences, 5, 36–41.

    Article  PubMed  Google Scholar 

  • Gulyas, B., Heywood, C. A., Popplewell, D. A., Roland, P. E., Cowey, A. (1994). Visual form discrimination from color or motion cues: Functional anatomy by positron emission tomography. Proceedings of the National Academy of Sciences, 91, 9965–9969.

    Article  Google Scholar 

  • Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P., & Tootell, R. B. H. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience, 1, 235–241.

    Article  PubMed  Google Scholar 

  • Lueck, C. J., Zeki, S., Friston, K. J., Deiber, M.-P., Cope, P., Cunningham, V. J., Lammertsma, A. A., Kennard, C., & Frackowiak, R. S. J. (1989). The colour centre in the cerebral cortex of man. Nature, 340, 386–389.

    Article  PubMed  Google Scholar 

  • MacLeod, C. M., & Dunbar, K. (1988). Training and Stroop-like interference: Evidence for a continuum of automaticity. Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 126–135.

    Article  Google Scholar 

  • Mattingley, J. B., & Rich, A. N. (2004). Behavioral and brain correlates of multisensory experience in synaesthesia. In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), Handbook of multisensory processes (pp. 851–865). Cambridge, MA: MIT Press.

    Google Scholar 

  • Mattingley, J. B., Rich, A. N., Yelland, G., & Bradshaw, J. L. (2001). Unconscious priming eliminates automatic binding of colour and alphanumeric form in synaesthesia. Nature, 410, 580–582.

    Article  PubMed  Google Scholar 

  • McKeefry, D. J., & Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain, 120, 2229–2242.

    Article  PubMed  Google Scholar 

  • Mills, C. B., Boteler, E. H., & Oliver, G. K. (1999). Digit synaesthesia: A case study using a Stroop-type test. Cognitive Neuropsychology, 16, 181–191.

    Article  Google Scholar 

  • Myles, K. M., Dixon, M. J., Smilek, D., & Merikle, P. M. (2003). Seeing double: The role of meaning in alphanumeric- colour synaesthesia. Brain & Cognition, 53, 342–345.

    Article  Google Scholar 

  • Nunn, J. A., Gregory, L. J., Brammer, M., Williams, S. C., Parslow, D. M., Morgan, M. J., Morris, R. G., Bullmore, E. T., Baron-Cohen, S., & Gray, J. A. (2002). Functional magnetic resonance imaging of synesthesia: Activation of V4/V8 by spoken words. Nature Neuroscience, 5, 371–375.

    Article  PubMed  Google Scholar 

  • Odgaard, E. C., Flowers, J. H., & Bradman, H. L. (1999). An investigation of the cognitive and perceptual dynamics of a colour-digit synaesthete. Perception, 28, 651–664.

    Article  PubMed  Google Scholar 

  • Palmeri, T. J., Blake, R., Marois, R., Flanery, M. A., & Whetsell, W., Jr. (2002). The perceptual reality of synesthetic colors. Proceedings of the National Academy of Sciences, 99, 4127–4131.

    Article  Google Scholar 

  • Paulesu, E., Harrison, J., Baron-Cohen, S., Watson, J. D. G., Goldstein, L., Heather, J., Frackowiak, R. S. J., & Frith, C. D. (1995). The physiology of coloured hearing: A PET activation study of colour-word synaesthesia. Brain, 118, 661–676.

    Article  PubMed  Google Scholar 

  • Polk, T. A., & Farah, M. J. (1998). The neural development and organization of letter recognition: Evidence from functional neuroimaging, computational modeling, and behavioral studies. Proceedings of the National Academy of Sciences, 95, 847–852.

    Article  Google Scholar 

  • Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 55–85). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Ramachandran, V. S., & Hubbard, E. M. (2001a). Psychological investigations into the neural basis of synaesthesia. Proceedings of the Royal Society of London, 268, 979–983.

    Article  Google Scholar 

  • Ramachandran, V. S., & Hubbard, E. M. (2001b). Synaesthesia: A window into perception, thought and language. Journal of Consciousness Studies, 8, 3–34

    Google Scholar 

  • Schneider, W. (1990). MEL user’s guide: Computer techniques for real-time experimentation. Pittsburgh, PA: Psychology Software Tools.

    Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190.

    Article  Google Scholar 

  • Smilek, D., & Dixon, M. J. (2002). Towards a synergistic understanding of synaesthesia: Combining current experimental findings with synaesthetes’ subjective descriptions. Psyche, 08. Retrieved July 1, 2003 from http://psyche.cs.monash.edu.au/v8/psyche-8-01-smilek.html.

  • Smilek, D., Dixon, M. J., Cudahy, C., & Merikle, P. M. (2001). Synaesthetic photisms influence visual perception. Journal of Cognitive Neuroscience, 13, 930–936.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Svartdal, F., & Iversen, T. (1989). Consistency in synesthetic experience to vowels and consonants: Five case studies. Scandinavian Journal of Psychology, 30, 220–227.

    Article  PubMed  Google Scholar 

  • Van Selst, M., & Jolicoeur, P. (1994). A solution to the effects of sample size on outlier elimination. Quarterly Journal of Experimental Psychology, 47A, 631–650.

    Google Scholar 

  • Wagar, B. M., Dixon, M. J., Smilek, D., & Cudahy, C. (2002). Colored photisms prevent object-substitution masking in digit-color synesthesia. Brain & Cognition, 48, 606–611.

    Google Scholar 

  • Wollen, K. A., & Ruggiero, F. T. (1983). Colored-letter synaesthesia. Journal of Mental Imagery, 7, 83–86.

    Google Scholar 

  • Zeki, S., & Marini, L. (1998). Three cortical stages of colour processing in the human brain. Brain, 121, 1669–1685.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of Waterloo, N2L 3G1, Waterloo, ON, Canada

    Mike J. Dixon, Daniel Smilek & Philip M. Merikle

Authors
  1. Mike J. Dixon
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Daniel Smilek
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Philip M. Merikle
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mike J. Dixon.

Additional information

The Natural Sciences and Engineering Research Council of Canada funded this research with operating grants awarded to the first and third authors and a postgraduate scholarship awarded to the second author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dixon, M.J., Smilek, D. & Merikle, P.M. Not all synaesthetes are created equal: Projector versus associator synaesthetes. Cognitive, Affective, & Behavioral Neuroscience 4, 335–343 (2004). https://doi.org/10.3758/CABN.4.3.335

Download citation

  • Received: 15 October 2003

  • Accepted: 02 June 2004

  • Issue Date: September 2004

  • DOI: https://doi.org/10.3758/CABN.4.3.335

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Stroop Task
  • Incongruent Trial
  • Stroop Effect
  • Color Naming
  • Color Patch
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.200.168.16

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.