Not all synaesthetes are created equal: Projector versus associator synaesthetes

Abstract

In synaesthesia, ordinary stimuli elicit extraordinary experiences. When grapheme-color synaesthetes view black text, each grapheme elicits a photism—a highly specific experience of color. Importantly, some synaesthetes (projectors) report experiencing their photisms in external space, whereas other synaesthetes (associators) report experiencing their photisms “in the mind’s eye.” We showed that projectors and associators can be differentiated not only by their subjective reports, but also by their performance on Stroop tasks. Digits were presented in colors that were either congruent or incongruent with the synaesthetes’ photisms. The synaesthetes named either the video colors of the digits or the colors of the photisms elicited by the digits. The results revealed systematic differences in the patterns of Stroop interference between projectors and associators. Converging evidence from first-person reports and third-person objective measures of Stroop interference establish the projector/ associator distinction as an important individual difference in grapheme-color synaesthesia.

References

  1. Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 5, 544–554.

    Article  Google Scholar 

  2. Baron-Cohen, S., Burt, L., Smith-Laittan, F., Harrison, J., & Bolton, P. (1996). Synaesthesia: Prevalence and familiarity. Perception, 25, 1073–1079.

    PubMed  Article  Google Scholar 

  3. Baron-Cohen, S., Harrison, J., Goldstein, L. H., & Wyke, M. (1993). Coloured speech perception: Is synaesthesia what happens when modularity breaks down? Perception, 22, 419–426.

    PubMed  Article  Google Scholar 

  4. Blake, R., Palmeri, T. J., Marois, R., & Chai, Y.-K. (in press). On the perceptual reality of synesthetic colors. In L. Robertson & N. Sagiv (Eds.), Synesthesia: Perspectives from cognitive neuroscience. New York: Oxford University Press.

  5. Chao, L. L., & Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about colors. Journal of Cognitive Neuroscience, 11, 25–35.

    PubMed  Article  Google Scholar 

  6. Cohen, L., & Dehaene, S. (1995). Number processing in pure alexia: The effect of hemispheric asymmetries and task demands. Neuro-Case, 1, 121–137.

    Google Scholar 

  7. Cytowic, R. E. (1993). The man who tasted shapes. New York: Warner.

    Google Scholar 

  8. Cytowic, R. E. (2003). Synesthesia. A union of the senses. (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  9. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual pathways. Journal of Experimental Psychology: General, 129, 481–507.

    Article  Google Scholar 

  10. Dixon, M. J., Smilek, D., Cudahy, C., & Merikle, P. M. (2000). Five plus two equals yellow. Nature, 406, 365.

    PubMed  Article  Google Scholar 

  11. Dixon, M. J., Smilek, D., Wagar, B. M., & Merikle, P. M. (2004). Grapheme-color synaesthesia: When 7 is yellow and D is blue. In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), Handbook of multisensory processes (pp. 837–849). Cambridge, MA: MIT Press.

    Google Scholar 

  12. Elias, L. J., Saucier, D. M., Hardie, C., & Sarty, G. E. (2003). Dissociating semantic and perceptual components of synaesthesia: Behavioural and functional neuroanatomical investigations. Cognitive Brain Research, 16, 232–237.

    PubMed  Article  Google Scholar 

  13. Gatti, S. V., & Egeth, H. E. (1978). Failure of spatial selectivity in vision. Bulletin of the Psychonomic Society, 11, 181–184.

    Google Scholar 

  14. Grossenbacher, P. G., & Lovelace, C. T. (2001). Mechanisms of synesthesia: Cognitive and physiological constraints. Trends in Cognitive Sciences, 5, 36–41.

    PubMed  Article  Google Scholar 

  15. Gulyas, B., Heywood, C. A., Popplewell, D. A., Roland, P. E., Cowey, A. (1994). Visual form discrimination from color or motion cues: Functional anatomy by positron emission tomography. Proceedings of the National Academy of Sciences, 91, 9965–9969.

    Article  Google Scholar 

  16. Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P., & Tootell, R. B. H. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience, 1, 235–241.

    PubMed  Article  Google Scholar 

  17. Lueck, C. J., Zeki, S., Friston, K. J., Deiber, M.-P., Cope, P., Cunningham, V. J., Lammertsma, A. A., Kennard, C., & Frackowiak, R. S. J. (1989). The colour centre in the cerebral cortex of man. Nature, 340, 386–389.

    PubMed  Article  Google Scholar 

  18. MacLeod, C. M., & Dunbar, K. (1988). Training and Stroop-like interference: Evidence for a continuum of automaticity. Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 126–135.

    Article  Google Scholar 

  19. Mattingley, J. B., & Rich, A. N. (2004). Behavioral and brain correlates of multisensory experience in synaesthesia. In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), Handbook of multisensory processes (pp. 851–865). Cambridge, MA: MIT Press.

    Google Scholar 

  20. Mattingley, J. B., Rich, A. N., Yelland, G., & Bradshaw, J. L. (2001). Unconscious priming eliminates automatic binding of colour and alphanumeric form in synaesthesia. Nature, 410, 580–582.

    PubMed  Article  Google Scholar 

  21. McKeefry, D. J., & Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain, 120, 2229–2242.

    PubMed  Article  Google Scholar 

  22. Mills, C. B., Boteler, E. H., & Oliver, G. K. (1999). Digit synaesthesia: A case study using a Stroop-type test. Cognitive Neuropsychology, 16, 181–191.

    Article  Google Scholar 

  23. Myles, K. M., Dixon, M. J., Smilek, D., & Merikle, P. M. (2003). Seeing double: The role of meaning in alphanumeric- colour synaesthesia. Brain & Cognition, 53, 342–345.

    Article  Google Scholar 

  24. Nunn, J. A., Gregory, L. J., Brammer, M., Williams, S. C., Parslow, D. M., Morgan, M. J., Morris, R. G., Bullmore, E. T., Baron-Cohen, S., & Gray, J. A. (2002). Functional magnetic resonance imaging of synesthesia: Activation of V4/V8 by spoken words. Nature Neuroscience, 5, 371–375.

    PubMed  Article  Google Scholar 

  25. Odgaard, E. C., Flowers, J. H., & Bradman, H. L. (1999). An investigation of the cognitive and perceptual dynamics of a colour-digit synaesthete. Perception, 28, 651–664.

    PubMed  Article  Google Scholar 

  26. Palmeri, T. J., Blake, R., Marois, R., Flanery, M. A., & Whetsell, W., Jr. (2002). The perceptual reality of synesthetic colors. Proceedings of the National Academy of Sciences, 99, 4127–4131.

    Article  Google Scholar 

  27. Paulesu, E., Harrison, J., Baron-Cohen, S., Watson, J. D. G., Goldstein, L., Heather, J., Frackowiak, R. S. J., & Frith, C. D. (1995). The physiology of coloured hearing: A PET activation study of colour-word synaesthesia. Brain, 118, 661–676.

    PubMed  Article  Google Scholar 

  28. Polk, T. A., & Farah, M. J. (1998). The neural development and organization of letter recognition: Evidence from functional neuroimaging, computational modeling, and behavioral studies. Proceedings of the National Academy of Sciences, 95, 847–852.

    Article  Google Scholar 

  29. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 55–85). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  30. Ramachandran, V. S., & Hubbard, E. M. (2001a). Psychological investigations into the neural basis of synaesthesia. Proceedings of the Royal Society of London, 268, 979–983.

    Article  Google Scholar 

  31. Ramachandran, V. S., & Hubbard, E. M. (2001b). Synaesthesia: A window into perception, thought and language. Journal of Consciousness Studies, 8, 3–34

    Google Scholar 

  32. Schneider, W. (1990). MEL user’s guide: Computer techniques for real-time experimentation. Pittsburgh, PA: Psychology Software Tools.

    Google Scholar 

  33. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190.

    Article  Google Scholar 

  34. Smilek, D., & Dixon, M. J. (2002). Towards a synergistic understanding of synaesthesia: Combining current experimental findings with synaesthetes’ subjective descriptions. Psyche, 08. Retrieved July 1, 2003 from http://psyche.cs.monash.edu.au/v8/psyche-8-01-smilek.html.

  35. Smilek, D., Dixon, M. J., Cudahy, C., & Merikle, P. M. (2001). Synaesthetic photisms influence visual perception. Journal of Cognitive Neuroscience, 13, 930–936.

    PubMed  Article  Google Scholar 

  36. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  37. Svartdal, F., & Iversen, T. (1989). Consistency in synesthetic experience to vowels and consonants: Five case studies. Scandinavian Journal of Psychology, 30, 220–227.

    PubMed  Article  Google Scholar 

  38. Van Selst, M., & Jolicoeur, P. (1994). A solution to the effects of sample size on outlier elimination. Quarterly Journal of Experimental Psychology, 47A, 631–650.

    Google Scholar 

  39. Wagar, B. M., Dixon, M. J., Smilek, D., & Cudahy, C. (2002). Colored photisms prevent object-substitution masking in digit-color synesthesia. Brain & Cognition, 48, 606–611.

    Google Scholar 

  40. Wollen, K. A., & Ruggiero, F. T. (1983). Colored-letter synaesthesia. Journal of Mental Imagery, 7, 83–86.

    Google Scholar 

  41. Zeki, S., & Marini, L. (1998). Three cortical stages of colour processing in the human brain. Brain, 121, 1669–1685.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mike J. Dixon.

Additional information

The Natural Sciences and Engineering Research Council of Canada funded this research with operating grants awarded to the first and third authors and a postgraduate scholarship awarded to the second author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dixon, M.J., Smilek, D. & Merikle, P.M. Not all synaesthetes are created equal: Projector versus associator synaesthetes. Cognitive, Affective, & Behavioral Neuroscience 4, 335–343 (2004). https://doi.org/10.3758/CABN.4.3.335

Download citation

Keywords

  • Stroop Task
  • Incongruent Trial
  • Stroop Effect
  • Color Naming
  • Color Patch