Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Cognitive, Affective, & Behavioral Neuroscience
  3. Article

Spatial constraints on visual-tactile cross-modal distractor congruency effects

  • Published: June 2004
  • Volume 4, pages 148–169, (2004)
  • Cite this article
Download PDF
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript
Spatial constraints on visual-tactile cross-modal distractor congruency effects
Download PDF
  • Charles Spence3,
  • Francesco Pavani1 &
  • Jon Driver2 
  • 2379 Accesses

  • 200 Citations

  • Explore all metrics

Abstract

Across three experiments, participants made speeded elevation discrimination responses to vibrotactile targets presented to the thumb (held in a lower position) or the index finger (upper position) of either hand, while simultaneously trying to ignore visual distractors presented independently from either the same or a different elevation. Performance on the vibrotactile elevation discrimination task was slower and less accurate when the visual distractor was incongruent with the elevation of the vibrotactile target (e.g., a lower light during the presentation of an upper vibrotactile target to the index finger) than when they were congruent, showing that people cannot completely ignore vision when selectively attending to vibrotactile information. We investigated the attentional, temporal, and spatial modulation of these cross-modal congruency effects by manipulating the direction of endogenous tactile spatial attention, the stimulus onset asynchrony between target and distractor, and the spatial separation between the vibrotactile target, any visual distractors, and the participant’s two hands within and across hemifields. Our results provide new insights into the spatiotemporal modulation of crossmodal congruency effects and highlight the utility of this paradigm for investigating the contributions of visual, tactile, and proprioceptive inputs to the multisensory representation of peripersonal space.

Article PDF

Download to read the full article text

Similar content being viewed by others

Tactile temporal offset cues reduce visual representational momentum

Article Open access 29 March 2021

Simon Merz, Christian Frings & Charles Spence

Response interference in touch, vision, and crossmodally: beyond the spatial dimension

Article 12 April 2014

Frank Mast, Christian Frings & Charles Spence

Direction-selective modulation of visual motion rivalry by collocated tactile motion

Article Open access 22 February 2022

Gwenisha J. Liaw, Sujin Kim & David Alais

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Austen, E. L., Soto-Faraco, S., Pinel, J. P. J., & Kingstone, A. F. (2001). Virtual body effect: Factors influencing visual-tactile integration. Abstracts of the Psychonomic Society, 6, 2.

    Google Scholar 

  • Banich, M. T. (1998). The missing link: The role of interhemispheric interaction in attentional processing. Brain & Cognition, 36, 128–157.

    Article  Google Scholar 

  • Bertelson, P., & de Gelder, B. (2004). The psychology of multimodal perception. In C. Spence & J. Driver (Eds.), Crossmodal space and crossmodal attention (pp. 141–177). Oxford: Oxford University Press.

    Google Scholar 

  • Besner, D., & Stolz, J. A. (1999). What kind of attention modulates the Stroop effect? Psychonomic Bulletin & Review, 6, 99–104.

    Google Scholar 

  • Bolognini, N., Frassinetti, F., & Làdavas, E. (2003). Acoustical vision of below threshold stimuli: Interaction among spatially converging audio-visual inputs. Manuscript submitted for publication.

  • Bradshaw, J. L., Howard, M. J., Pierson, J. M., Phillips, J., & Bradshaw, J. A. (1992). Effects of expectancy and attention in vibrotactile choice reaction time tasks. Quarterly Journal of Experimental Psychology, 44A, 509–528.

    Google Scholar 

  • Chan, J. S., Merrifield, K., & Spence, C. (2004). Auditory spatial attention assessed in a flanker interference task. Manuscript submitted for publication.

  • Chong, T., & Mattingley, J. B. (2000). Preserved cross-modal attentional links in the absence of conscious vision: Evidence from patients with primary visual cortex lesions [Abstract]. Journal of Cognitive Neuroscience, 12(Suppl.), 38.

    Google Scholar 

  • Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception & Performance, 11, 529–553.

    Article  Google Scholar 

  • di Pellegrino, G., & Frassinetti, F. (2000). Direct evidence from parietal extinction of enhancement of visual attention near a visible hand. Current Biology, 10, 1475–1477.

    Article  PubMed  Google Scholar 

  • di Pellegrino, G., Làdavas, E., & Farné, A. (1997). Seeing where your hands are. Nature, 388, 730.

    Article  PubMed  Google Scholar 

  • Driver, J., & Grossenbacher, P. G. (1996). Multimodal spatial constraints on tactile selective attention. In T. Inui & J. L. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 209–235). Cambridge, MA: MIT Press.

    Google Scholar 

  • Driver, J., & Spence, C. J. (1994). Spatial synergies between auditory and visual attention. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 311–331). Cambridge, MA: MIT Press.

    Google Scholar 

  • Driver, J., & Spence, C. (1998). Crossmodal links in spatial attention. Philosophical Transactions of the Royal Society of London: Series B, 353, 1319–1331.

    Article  Google Scholar 

  • Driver, J., & Spence, C. (2004). Crossmodal spatial attention: Evidence from human performance. In C. Spence & J. Driver (Eds.), Crossmodal space and crossmodal attention (pp. 179–220). Oxford: Oxford University Press.

    Google Scholar 

  • Duhamel, J.-R., Colby, C. L., & Goldberg, M. E. (1991). Congruent representations of visual and somatosensory space in single neurons of monkey intra-parietal cortex (area VIP). In J. Paillard (Ed.), Brain and space (pp. 223–236). New York: Oxford University Press.

    Google Scholar 

  • Dyer, F. N. (1971). The duration of word meaning responses: Stroop interference for different preexposures of the word. Psychonomic Science, 25, 229–231.

    Google Scholar 

  • Eimer, M. (2004). Electrophysiology of human crossmodal spatial attention. In C. Spence & J. Driver (Eds.), Crossmodal space and crossmodal attention (pp. 221–245). Oxford: Oxford University Press.

    Google Scholar 

  • Eimer, M., & Driver, J. (2000). An event-related brain potential study of cross-modal links in spatial attention between vision and touch. Psychophysiology, 37, 697–705.

    Article  PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.

    Google Scholar 

  • Eriksen, C. W., & Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Perception & Psychophysics, 12, 201–204.

    Google Scholar 

  • Frassinetti, F., Bolognini, N., & Làdavas, E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147, 332–343.

    Article  Google Scholar 

  • Friedman, A., & Polson, M. C. (1981). Hemispheres as independent resource systems: Limited-capacity processing and cerebral specialization. Journal of Experimental Psychology: Human Perception & Performance, 7, 1031–1058.

    Article  Google Scholar 

  • Graziano, M. S. A., & Botvinick, M. M. (2002). How the brain represents the body: Insights from neurophysiology and psychology. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action: Attention and performance XIX (pp. 136–157). Oxford: Oxford University Press.

    Google Scholar 

  • Groh, J. M., & Sparks, D. L. (1996). Saccades to somatosensory targets: 1. Behavioral characteristics. Journal of Neurophysiology, 75, 412–427.

    PubMed  Google Scholar 

  • Holmes, N., Calvert, C., & Spence, C. (2004). Does tool-use extend visuotactile peripersonal space? Evidence from the crossmodal congruency task. Manuscript submitted for publication.

  • Holmes, N., Crozier, G., & Spence, C. (2004). When mirrors lie: “Visual capture” of arm position impairs reaching performance. Cognitive, Affective, & Behavioral Neuroscience, 4, 194–201.

    Article  Google Scholar 

  • Holmes, N., & Spence, C. (2004). The body schema and the multisensory representation(s) of peripersonal space. Cognitive Processing, 5, 94–105.

    Article  PubMed  Google Scholar 

  • Hommel, B. (1993a). Inverting the Simon effect by intention: Determinants of direction and extent of effects of irrelevant spatial information. Psychological Research, 55, 270–279.

    Article  Google Scholar 

  • Hommel, B. (1993b). The relationship between stimulus processing and response selection in the Simon task: Evidence for a temporal overlap. Psychological Research, 55, 280–290.

    Article  Google Scholar 

  • Howell, D. C. (1999). Fundamental statistics for the behavioural sciences. Pacific Grove, CA: Duxbury.

    Google Scholar 

  • Jones, D. M., & Hapeshi, K. (1991). Final report of the contract: Information-processing under high workload. Army Personnel Research Establishment, Farnborough, U.K.

    Google Scholar 

  • Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 26–61). San Diego: Academic Press.

    Google Scholar 

  • Kennett, S., Eimer, M., Spence, C., & Driver, J. (2001). Tactilevisual links in exogenous spatial attention under different postures: Convergent evidence from psychophysics and ERPs. Journal of Cognitive Neuroscience, 13, 462–478.

    Article  PubMed  Google Scholar 

  • Kennett, S., Spence, C., & Driver, J. (2002). Visuo-tactile links in covert exogenous spatial attention remap across changes in unseen hand posture. Perception & Psychophysics, 64, 1083–1094.

    Article  Google Scholar 

  • Kinsbourne, M., & Cook, J. (1971). Generalized and lateralized effects of concurrent verbalization on a unimanual skill. Quarterly Journal of Experimental Psychology, 23, 341–345.

    Article  Google Scholar 

  • Kinsbourne, M., & Hicks, R. E. (1978). Functional cerebral space: A model for overflow, transfer and interference effects in human performance: A tutorial review. In J. Requin (Ed.), Attention and performance VII (pp. 345–362). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Làdavas, E. (2002). Functional and dynamic properties of visual peripersonal space. Trends in Cognitive Sciences, 6, 17–22.

    Article  Google Scholar 

  • Làdavas, E., & Farnè, A. (2004). Neuropsychological evidence for multimodal representations of space near specific body parts. In C. Spence & J. Driver (Eds.), Crossmodal space and crossmodal attention (pp. 69–98). Oxford: Oxford University Press.

    Google Scholar 

  • Lloyd, D. M., Merat, N., McGlone, F., & Spence, C. (2003). Crossmodal links between audition and touch in covert endogenous spatial attention. Perception & Psychophysics, 65, 901–924.

    Article  Google Scholar 

  • Lloyd, D. M., Shore, D. I., Spence, C., & Calvert, G. A. (2003). Multisensory representation of limb position in human premotor cortex. Nature Neuroscience, 6, 17–18.

    Article  PubMed  Google Scholar 

  • Lu, C.-H., & Procter, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174–207.

    Google Scholar 

  • Maravita, A., Spence, C., & Driver, J. (2003). Multisensory integration and the body schema: Close to hand and within reach. Current Biology, 13, R531-R539.

    Article  PubMed  Google Scholar 

  • Maravita, A., Spence, C., Kennett, S., & Driver, J. (2002). Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition, 83, B25-B34.

    Article  PubMed  Google Scholar 

  • Maravita, A., Spence, C., Sergent, C., & Driver, J. (2002). Seeing your own touched hands in a mirror modulates cross-modal interactions. Psychological Science, 13, 350–356.

    Article  PubMed  Google Scholar 

  • Marks, L. E. (2004). Cross-modal interactions in speeded classification. In G. Calvert, C. Spence, & B. E. Stein (Eds.), Handbook of multisensory processes (pp. 85–105). Cambridge, MA: MIT Press.

    Google Scholar 

  • Merat, N., Spence, C., Lloyd, D. M., Withington, D. J., & Mc-Glone, F. (1999). Audiotactile links in focused and divided spatial attention. Society for Neuroscience Abstracts, 25, 1417.

    Google Scholar 

  • Merola, J. L., & Liederman, J. (1985). Developmental changes in hemispheric independence. Child Development, 56, 1184–1194.

    Article  PubMed  Google Scholar 

  • Pashler, H. E. (1998). The psychology of attention. Cambridge, MA: MIT Press.

    Google Scholar 

  • Passarotti, A. M., Banich, M. T., Sood, R. K., & Wang, J. M. (2002). A generalized role of interhemispheric interaction under attentionally demanding conditions: Evidence from the auditory and tactile modality. Neuropsychologia, 40, 1082–1096.

    Article  PubMed  Google Scholar 

  • Pavani, F., & Castiello, U. (2004). Binding personal and extrapersonal space through body shadows. Nature Neuroscience, 7, 13–14.

    Article  Google Scholar 

  • Pavani, F., Spence, C., & Driver, J. (2000). Visual capture of touch: Out-of-the-body experiences with rubber gloves. Psychological Science, 11, 353–359.

    Article  PubMed  Google Scholar 

  • Pick, H. L., Jr., Warren, D. H., & Hay, J. C. (1969). Sensory conflict in judgments of spatial direction. Perception & Psychophysics, 6, 203–205.

    Google Scholar 

  • Pierson, J. M., Bradshaw, J. L., Meyer, T. F., Howard, M. J., & Bradshaw, J. A. (1991). Direction of gaze during vibrotactile choice reaction time tasks. Neuropsychologia, 29, 925–928.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  PubMed  Google Scholar 

  • Riggio, L., Gawryszewski, L. de G., & Umiltà, C. (1986). What is crossed in crossed-hand effect? Acta Psychologica, 62, 89–100.

    Article  Google Scholar 

  • Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1997). The space around us. Science, 277, 190–191.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G. C., Scandolara, M., Matelli, M., & Gentilucci, M. (1981). Afferent properties of periarcuate neurons in macaque monkeys: II. Visual responses. Behavioural Brain Research, 2, 147–163.

    Article  PubMed  Google Scholar 

  • Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14, 121–124.

    PubMed  Google Scholar 

  • Shore, D. I., Spry, E., & Spence, C. (2002). Confusing the mind by crossing the hands. Cognitive Brain Research, 14, 153–163.

    Article  PubMed  Google Scholar 

  • Shore, D. I., Spry, E., & Spence, C. (2004). Spatial modulation of tactile temporal order judgments. Manuscript submitted for publication.

  • Soto-Faraco, S., Morein-Zamir, S., & Kingstone, A. (in press). On audiovisual spatial synergy: The fragility of the phenomenon. Perception & Psychophysics.

  • Soto-Faraco, S., Ronald, A., & Spence, C. (in press). Tactile selective attention and body posture: Assessing the contribution of vision and proprioception. Perception & Psychophysics.

  • Spence, C. (2001). Crossmodal attentional capture: A controversy resolved? In C. Folk & B. Gibson (Eds.), Attention, distraction and action: Multiple perspectives on attentional capture (pp. 231–262). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Spence, C. (2002). Multimodal attention and tactile informationprocessing. Behavioural Brain Research, 135, 57–64.

    Article  PubMed  Google Scholar 

  • Spence, C., Baddeley, R., Zampini, M., James, R., & Shore, D. I. (2003). Multisensory temporal order judgments: When two locations are better than one. Perception & Psychophysics, 65, 318–328.

    Article  Google Scholar 

  • Spence, C., & Driver, J. (1996). Audiovisual links in endogenous covert spatial attention. Journal of Experimental Psychology: Human Perception & Performance, 22, 1005–1030.

    Article  Google Scholar 

  • Spence, C., & Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting. Perception & Psychophysics, 59, 1–22.

    Google Scholar 

  • Spence, C., & Driver, J. (Eds.) (2004). Crossmodal space and crossmodal attention. Oxford: Oxford University Press.

    Google Scholar 

  • Spence, C., Kingstone, A., Shore, D. I., & Gazzaniga, M. S. (2001). Representation of visuotactile space in the split brain. Psychological Science, 12, 90–93.

    Article  PubMed  Google Scholar 

  • Spence, C., McDonald, J., & Driver, J. (2004). Exogenous spatialcuing studies of human crossmodal attention and multisensory integration. In C. Spence & J. Driver (Eds.), Crossmodal space and crossmodal attention (pp. 277–320). Oxford: Oxford University Press.

    Google Scholar 

  • Spence, C., Pavani, F., & Driver, J. (1998). What crossing the hands can reveal about crossmodal links in spatial attention. Abstracts of the Psychonomic Society, 3, 13.

    Google Scholar 

  • Spence, C., Pavani, F., & Driver, J. (2000). Crossmodal links between vision and touch in covert endogenous spatial attention. Journal of Experimental Psychology: Human Perception & Performance, 26, 1298–1319.

    Article  Google Scholar 

  • Spence, C., Ranson, J., & Driver, J. (2000). Cross-modal selective attention: On the difficulty of ignoring sounds at the locus of visual attention. Perception & Psychophysics, 62, 410–424.

    Google Scholar 

  • Spence, C., Shore, D. I., Gazzaniga, M. S., Soto-Faraco, S., & Kingstone, A. (2001). Failure to remap visuotactile space across the midline in the split-brain. Canadian Journal of Experimental Psychology, 55, 135–142.

    Google Scholar 

  • Spence, C., Shore, D. I., & Klein, R. M. (2001). Multisensory prior entry. Journal of Experimental Psychology: General, 130, 799–832.

    Article  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.

    Google Scholar 

  • Townsend, J. T., & Ashby, F. G. (1983). Stochastic modelling of elementary psychological processes. New York: Cambridge University Press.

    Google Scholar 

  • Walton, M., & Spence, C. (2004). Cross-modal congruency and visual capture in a visual elevation discrimination task. Experimental Brain Research, 154, 113–120.

    Article  Google Scholar 

  • Yamamoto, S., & Kitazawa, S. (2001). Reversal of subjective temporal order due to arm crossing. Nature Neuroscience, 4, 759–765.

    Article  PubMed  Google Scholar 

  • Yantis, S. (1996). Attentional capture in vision. In A. F. Kramer, M. G.Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 45–76). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 73–103). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Università di Trento, Trento, Italy

    Francesco Pavani

  2. University College London, London, England

    Jon Driver

  3. Department of Experimental Psychology, University of Oxford, South Parks Road, OX1 3UD, Oxford, England

    Charles Spence

Authors
  1. Charles Spence
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Francesco Pavani
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jon Driver
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Charles Spence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spence, C., Pavani, F. & Driver, J. Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cognitive, Affective, & Behavioral Neuroscience 4, 148–169 (2004). https://doi.org/10.3758/CABN.4.2.148

Download citation

  • Received: 15 October 2003

  • Accepted: 30 April 2004

  • Issue Date: June 2004

  • DOI: https://doi.org/10.3758/CABN.4.2.148

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Stimulus Onset Asynchrony
  • Congruency Effect
  • Distractor Stimulus
  • Peripersonal Space
  • Visual Distractor
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature