Skip to main content

Neuroimaging studies of working memory:

Abstract

We performed meta-analyses on 60 neuroimaging (PET and fMRI) studies of working memory (WM), considering three types of storage material (spatial, verbal, and object), three types of executive function (continuous updating of WM, memory for temporal order, and manipulation of information in WM), and interactions between material and executive function. Analyses of material type showed the expected dorsal-ventral dissociation between spatial and nonspatial storage in the posterior cortex, but not in the frontal cortex. Some support was found for left frontal dominance in verbal WM, but only for tasks with low executive demand. Executive demand increased right lateralization in the frontal cortex for spatial WM. Tasks requiring executive processing generally produce more dorsal frontal activations than do storage-only tasks, but not all executive processes show this pattern. Brodmann’s areas (BAs) 6, 8, and 9, in the superior frontal cortex, respond most when WM must be continuously updated and when memory for temporal order must be maintained. Right BAs 10 and 47, in the ventral frontal cortex, respond more frequently with demand for manipulation (including dual-task requirements or mental operations). BA 7, in the posterior parietal cortex, is involved in all types of executive function. Finally, we consider a potential fourth executive function: selective attention to features of a stimulus to be stored in WM, which leads to increased probability of activating the medial prefrontal cortex (BA 32) in storage tasks.

References

  1. Aldridge, J. W., & Berridge, K. C. (1998). Coding of serial order by neostriatal neurons: A “natural action” approach to movement sequence. Journal of Neuroscience, 18, 2777–2787.

    PubMed  Google Scholar 

  2. Baddeley, A. (1992). Working memory. Science, 255, 556–559.

    PubMed  Article  Google Scholar 

  3. Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35, 1373–1380.

    PubMed  Article  Google Scholar 

  4. Belger, A., Puce, A., Krystal, J. H., Gore, J. C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping, 6, 14–32.

    PubMed  Article  Google Scholar 

  5. Berman, R. A., & Colby, C. L. (2002). Spatial working memory in human extrastriate cortex. Physiology & Behavior, 77, 621–627.

    Article  Google Scholar 

  6. Bor, D., Duncan, J., & Owen, A. M. (2001). The role of spatial configuration in tests of working memory explored with functional neuroimaging. Scandinavian Journal of Psychology, 42, 217–224.

    PubMed  Article  Google Scholar 

  7. Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., Snyder, A. Z., Ollinger, J. M., Akbudak, E., Conturo, T. E., & Petersen, S. E. (2001). Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage, 14, 48–59.

    PubMed  Article  Google Scholar 

  8. Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15, 523–536.

    PubMed  Article  Google Scholar 

  9. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.

    PubMed  Article  Google Scholar 

  10. Bunge, S. A., Klingberg, T., Jacobsen, R. B., & Gabrieli, J. D. (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy of Sciences, 97, 3573–3578.

    Article  Google Scholar 

  11. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.

    PubMed  Article  Google Scholar 

  12. Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 20–26.

    PubMed  Article  Google Scholar 

  13. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.

    PubMed  Article  Google Scholar 

  14. Casey, B. J., Cohen, J. D., O’Craven, K., Davidson, R. J., Irwin, W., Nelson, C. A., Noll, D. C., Hu, X., Lowe, M. J., Rosen, B. R., Truwitt, C. L., & Turski, P. A. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage, 8, 249–261.

    PubMed  Article  Google Scholar 

  15. Chein, J. M., & Fiez, J. A. (2001). Dissociation of verbal working memory system components using a delayed serial recall task. Cerebral Cortex, 11, 1003–1014.

    PubMed  Article  Google Scholar 

  16. Chein, J. M., Fissell, K., Jacobs, S., & Fiez, J. A. (2002). Functional heterogeneity within Broca’s area during verbal working memory. Physiology & Behavior, 77, 635–639.

    Article  Google Scholar 

  17. Clark, C. R., Egan, G. F., McFarlane, A. C., Morris, P., Weber, D., Sonkkilla, C., Marcina, J., & Tochon-Danguy, H. J. (2000). Updating working memory for words: A PET activation study. Human Brain Mapping, 9, 42–54.

    PubMed  Article  Google Scholar 

  18. Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.

    PubMed  Article  Google Scholar 

  19. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.

    PubMed  Article  Google Scholar 

  20. Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.

    PubMed  Article  Google Scholar 

  21. Collette, F., Salmon, E., Van der Linden, M., Chicherio, C., Belleville, S., Degueldre, C., Delfiore, G., & Franck, G. (1999). Regional brain activity during tasks devoted to the central executive of working memory. Cognitive Brain Research, 7, 411–417.

    PubMed  Article  Google Scholar 

  22. Cornette, L., Dupont, P., Bormans, G., Mortelmans, L., & Orban, G. A. (2001). Separate neural correlates for the mnemonic components of successive discrimination and working memory tasks. Cerebral Cortex, 11, 59–72.

    PubMed  Article  Google Scholar 

  23. Cornette, L., Dupont, P., Salmon, E., & Orban, G. A. (2001). The neural substrate of orientation working memory. Journal of Cognitive Neuroscience, 13, 813–828.

    PubMed  Article  Google Scholar 

  24. Courtney, S. M., Petit, L., Haxby, J. V., & Ungerleider, L. G. (1998). The role of prefrontal cortex in working memory: Examining the contents of consciousness. Philosophical Transactions of the Royal Society of London: Series B, 353, 1819–1828.

    Article  Google Scholar 

  25. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6, 39–49.

    PubMed  Article  Google Scholar 

  26. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.

    PubMed  Article  Google Scholar 

  27. Crosson, B., Rao, S. M., Woodley, S. J., Rosen, A. C., Bobholz, J. A., Mayer, A., Cunningham, J. M., Hammeke, T. A., Fuller, S. A., Binder, J. R., Cox, R. W., & Stein, E. A. (1999). Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology, 13, 171–187.

    PubMed  Article  Google Scholar 

  28. Curtis, C. E., Zald, D. H., & Pardo, J. V. (2000). Organization of working memory within the human prefrontal cortex: A PET study of self-ordered object working memory. Neuropsychologia, 38, 1503–1510.

    PubMed  Article  Google Scholar 

  29. Dade, L. A., Zatorre, R. J., Evans, A. C., & Jones-Gotman, M. (2001). Working memory in another dimension: Functional imaging of human olfactory working memory. NeuroImage, 14, 650–660.

    PubMed  Article  Google Scholar 

  30. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806.

    PubMed  Article  Google Scholar 

  31. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.

    PubMed  Article  Google Scholar 

  32. D’Esposito, M., Postle, B. R., Jonides, J., & Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences, 96, 7514–7519.

    Article  Google Scholar 

  33. Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt. 1), 279–306.

    PubMed  Article  Google Scholar 

  34. Diwadkar, V. A., Carpenter, P. A., & Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. NeuroImage, 12, 85–99.

    PubMed  Article  Google Scholar 

  35. Druzgal, T. J., & D’ Esposito, M. (2001). Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research, 10, 355–364.

    PubMed  Article  Google Scholar 

  36. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18, 42–57.

    PubMed  Article  Google Scholar 

  37. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.

    PubMed  Google Scholar 

  38. Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365, 753–756.

    PubMed  Article  Google Scholar 

  39. Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., & Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces. NeuroImage, 8, 409–425.

    PubMed  Article  Google Scholar 

  40. Haut, M. W., Leach, S., Kuwabara, H., Whyte, S., Callahan, T., Ducatman, A., Lombardo, L. J., & Gupta, N. (2000). Verbal working memory and solvent exposure: A positron emission tomography study. Neuropsychology, 14, 551–558.

    PubMed  Article  Google Scholar 

  41. Haxby, J. V., Petit, L., Ungerleider, L. G., & Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. NeuroImage, 11(5, Pt. 1), 380–391.

    PubMed  Article  Google Scholar 

  42. Honey, G. D., Bullmore, E. T., & Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage, 12, 495–503.

    PubMed  Article  Google Scholar 

  43. Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G., & Parasuraman, R. (2000). Complementary neural mechanisms for tracking items in human working memory. Science, 287, 643–646.

    PubMed  Article  Google Scholar 

  44. Jonides, J., Badre, D., Curtis, C., Thompson-Schill, S., & Smith, E. E. (2002). Mechanisms of conflict resolution in the prefrontal cortex. In D. T. Stuss & R. L. Knight (Eds.), The frontal lobes (pp. 233–245). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  45. Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A., Marshuetz, C., & Willis, C. R. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience, 18, 5026–5034.

    PubMed  Google Scholar 

  46. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.

    PubMed  Article  Google Scholar 

  47. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95, 8410–8413.

    Article  Google Scholar 

  48. Kaufman, L., & Rousseeuw, P. J. (1987). Clustering by means of medoids In Y. Dodge (Ed.), Statistical data analysis based on the L1 norm (pp. 405–416). Amsterdam: North-Holland.

    Google Scholar 

  49. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. New York: Wiley.

    Book  Google Scholar 

  50. Klingberg, T., O’Sullivan, B. T., & Roland, P. E. (1997). Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cerebral Cortex, 7, 465–471.

    PubMed  Article  Google Scholar 

  51. LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage, 10, 695–704.

    PubMed  Article  Google Scholar 

  52. Landro, N. I., Rund, B. R., Lund, A., Sundet, K., Mjellem, N., Asbjornsen, A., Thomsen, T., Ersland, L., Lundervold, A., Smievoll, A. I., Egeland, J., Stordal, K., Roness, A., Sundberg, H., & Hugdahl, K. (2001). Honig’s model of working memory and brain activation: An fMRI study. NeuroReport, 12, 4047–4054.

    PubMed  Article  Google Scholar 

  53. Levy, R., & Goldman-Rakic, P. S. (1999). Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. Journal of Neuroscience, 19, 5149–5158.

    PubMed  Google Scholar 

  54. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the 5th Berkeley Symposium on Mathematical Statistics and Probability.

  55. Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(Suppl. 2), 130–144.

    PubMed  Article  Google Scholar 

  56. McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., & Goldman-Rakic, P. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cerebral Cortex, 6, 600–611.

    PubMed  Article  Google Scholar 

  57. Mecklinger, A., Bosch, V., Gruenewald, C., Bentin, S., & von Cramon, D. Y. (2000). What have Klingon letters and faces in common? An fMRI study on content-specific working memory systems. Human Brain Mapping, 11, 146–161.

    PubMed  Article  Google Scholar 

  58. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    PubMed  Article  Google Scholar 

  59. Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197–206.

    PubMed  Article  Google Scholar 

  60. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    PubMed  Article  Google Scholar 

  61. Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11(5, Pt. 1), 424–446.

    PubMed  Article  Google Scholar 

  62. Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. European Journal of Neuroscience, 9, 1329–1339.

    PubMed  Article  Google Scholar 

  63. Owen, A. M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133, 33–43.

    Article  Google Scholar 

  64. Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6, 31–38.

    PubMed  Article  Google Scholar 

  65. Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P., Carpenter, T. A., Minhas, P. S., Turkheimer, F. E., Williams, E. J., Robbins, T. W., Sahakian, B. J., Petrides, M., & Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11, 567–574.

    PubMed  Article  Google Scholar 

  66. Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95, 7721–7726.

    Article  Google Scholar 

  67. Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345.

    PubMed  Article  Google Scholar 

  68. Perlstein, W. M., Elbert, T., & Stenger, V. A. (2002). Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proceedings of the National Academy of Sciences, 99, 1736–1741.

    Article  Google Scholar 

  69. Petit, L., Courtney, S. M., Ungerleider, L. G., & Haxby, J. V. (1998). Sustained activity in the medial wall during working memory delays. Journal of Neuroscience, 18, 9429–9437.

    PubMed  Google Scholar 

  70. Petrides, M. (1991). Functional specialization within the dorsolateral frontal cortex for serial order memory. Proceedings of the Royal Society of London: Series B, 246, 299–306.

    Article  Google Scholar 

  71. Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences, 90, 878–882.

    Article  Google Scholar 

  72. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331–348.

    PubMed  Article  Google Scholar 

  73. Picard, N., & Strick, P. L. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6, 342–353.

    PubMed  Article  Google Scholar 

  74. Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of the left frontopolar cortex. NeuroImage, 14(1,Pt. 2), S118-S124.

    PubMed  Article  Google Scholar 

  75. Pollmann, S., & von Cramon, D. Y. (2000). Object working memory and visuospatial processing: Functional neuroanatomy analyzed by event-related fMRI. Experimental Brain Research, 133, 12–22.

    Article  Google Scholar 

  76. Rama, P., Martinkauppi, S., Linnankoski, I., Koivisto, J., Aronen, H. J., & Carlson, S. (2001). Working memory of identification of emotional vocal expressions: An fMRI study. NeuroImage, 13(6, Pt. 1), 1090–1101.

    PubMed  Article  Google Scholar 

  77. Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174–187.

    PubMed  Article  Google Scholar 

  78. Rockland, K. S. (2002). Visual cortical organization at the single axon level: A beginning. Neuroscience Research, 42, 155–166.

    PubMed  Article  Google Scholar 

  79. Rowe, J. B., & Passingham, R. E. (2001). Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. NeuroImage, 14(1, Pt. 1), 77–86.

    PubMed  Article  Google Scholar 

  80. Rubenstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception & Performance, 27, 763–797.

    Article  Google Scholar 

  81. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9, 216–226.

    PubMed  Article  Google Scholar 

  82. Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., & Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system. NeuroImage, 3, 79–88.

    PubMed  Article  Google Scholar 

  83. Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: Effects of performance and aging. Proceedings of the National Academy of Sciences, 98, 2095–2100.

    Article  Google Scholar 

  84. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    PubMed  Article  Google Scholar 

  85. Smith, E. E., & Jonides, J. (2003). Executive control and thought. In L. R. Squire (Ed.), Fundamental neuroscience (2nd ed., pp. 1377–1394). San Diego: Academic Press.

    Google Scholar 

  86. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6, 11–20.

    PubMed  Article  Google Scholar 

  87. Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus object working-memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337–356.

    Article  Google Scholar 

  88. Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences, 95, 876–882.

    Article  Google Scholar 

  89. Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging. NeuroImage, 11(5, Pt. 1), 392–399.

    PubMed  Article  Google Scholar 

  90. Sylvester, C. Y., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., & Jonides, J. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41, 357–370.

    PubMed  Article  Google Scholar 

  91. Thomas, K. M., King, S. W., Franzen, P. L., Welsh, T. F., Berkowitz, A. L., Noll, D. C., Birmaher, V., & Casey, B. J. (1999). A developmental functional MRI study of spatial working memory. NeuroImage, 10(3, Pt. 1), 327–338.

    PubMed  Article  Google Scholar 

  92. Tsukiura, T., Fujii, T., Takahashi, T., Xiao, R., Inase, M., Iijima, T., Yamadori, A., & Okuda, J. (2001). Neuroanatomical discrimination between manipulating and maintaining processes involved in verbal working memory: A functional MRI study. Cognitive Brain Research, 11, 13–21.

    PubMed  Article  Google Scholar 

  93. Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4, 157–165.

    PubMed  Article  Google Scholar 

  94. Van der Linden, M., Collette, F., Salmon, E., Delfiore, G., Degueldre, C., Luxen, A., & Franck, G. (1999). The neural correlates of updating information in verbal working memory. Memory, 7, 549–560.

    PubMed  Article  Google Scholar 

  95. Wager, T. D., Jonides, J., Smith, E. E., Hernandez, L., Bryck, R., Nichols, T. E., Sylvester, C. C., Lacey, S. C., & Noll, D. C. (2002, April). Response conflict and cognitive control: Item and set-related processes in a Stroop-like task. Poster presented at the Annual Meeting of the Cognitive Neuroscience Society, San Francisco.

  96. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531.

    PubMed  Article  Google Scholar 

  97. Wilson, F. A., Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.

    PubMed  Article  Google Scholar 

  98. Zurowski, B., Gostomzyk, J., Gron, G., Weller, R., Schirrmeister, H., Neumeier, B., Spitzer, M., Reske, S. N., & Walter, H. (2002). Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. NeuroImage, 15, 45–57.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tor D. Wager.

Additional information

This research was supported by a National Institute of Mental Health grant to the second author and a National Science Foundation Graduate Research Fellowship to the first author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wager, T.D., Smith, E.E. Neuroimaging studies of working memory:. Cognitive, Affective, & Behavioral Neuroscience 3, 255–274 (2003). https://doi.org/10.3758/CABN.3.4.255

Download citation

Keywords

  • Executive Function
  • Frontal Cortex
  • Selective Attention
  • Material Type
  • Executive Process