Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
  1. Home
  2. Cognitive, Affective, & Behavioral Neuroscience
  3. Article
Neuroimaging studies of working memory:
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Information content best characterises the hemispheric selectivity of the inferior parietal lobe: a meta-analysis

15 September 2020

Oliver Gray, Lewis Fry & Daniela Montaldi

Awareness of the relative quality of spatial working memory representations

31 January 2023

Alison Y. Li & Thomas C. Sprague

The success of the representation maintenance affects the memory-guided search processing: an ERP study

21 November 2018

Min Wang, Ping Yang, … Ling Li

Set size effects on working memory precision are not due to an averaging of slots

24 July 2020

Michael S. Pratte

Dual-axes of functional organisation across lateral parietal cortex: the angular gyrus forms part of a multi-modal buffering system

07 June 2022

Gina F. Humphreys & Roni Tibon

Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control

27 March 2023

Monica N. Toba, Tal Seidel Malkinson, … Alfredo Spagna

Allocation of resources in working memory: Theoretical and empirical implications for visual search

17 March 2021

Stanislas Huynh Cong & Dirk Kerzel

How do we measure attention? Using factor analysis to establish construct validity of neuropsychological tests

22 July 2021

Melissa Treviño, Xiaoshu Zhu, … Todd S. Horowitz

What Executive Function Network is that? An Image-Based Meta-Analysis of Network Labels

10 May 2021

Suzanne T. Witt, Helene van Ettinger-Veenstra, … Angela R. Laird

Download PDF
  • Published: December 2003

Neuroimaging studies of working memory:

  • Tor D. Wager1 &
  • Edward E. Smith1 

Cognitive, Affective, & Behavioral Neuroscience volume 3, pages 255–274 (2003)Cite this article

  • 9692 Accesses

  • 1372 Citations

  • 9 Altmetric

  • Metrics details

Abstract

We performed meta-analyses on 60 neuroimaging (PET and fMRI) studies of working memory (WM), considering three types of storage material (spatial, verbal, and object), three types of executive function (continuous updating of WM, memory for temporal order, and manipulation of information in WM), and interactions between material and executive function. Analyses of material type showed the expected dorsal-ventral dissociation between spatial and nonspatial storage in the posterior cortex, but not in the frontal cortex. Some support was found for left frontal dominance in verbal WM, but only for tasks with low executive demand. Executive demand increased right lateralization in the frontal cortex for spatial WM. Tasks requiring executive processing generally produce more dorsal frontal activations than do storage-only tasks, but not all executive processes show this pattern. Brodmann’s areas (BAs) 6, 8, and 9, in the superior frontal cortex, respond most when WM must be continuously updated and when memory for temporal order must be maintained. Right BAs 10 and 47, in the ventral frontal cortex, respond more frequently with demand for manipulation (including dual-task requirements or mental operations). BA 7, in the posterior parietal cortex, is involved in all types of executive function. Finally, we consider a potential fourth executive function: selective attention to features of a stimulus to be stored in WM, which leads to increased probability of activating the medial prefrontal cortex (BA 32) in storage tasks.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Aldridge, J. W., & Berridge, K. C. (1998). Coding of serial order by neostriatal neurons: A “natural action” approach to movement sequence. Journal of Neuroscience, 18, 2777–2787.

    PubMed  Google Scholar 

  • Baddeley, A. (1992). Working memory. Science, 255, 556–559.

    Article  PubMed  Google Scholar 

  • Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35, 1373–1380.

    Article  PubMed  Google Scholar 

  • Belger, A., Puce, A., Krystal, J. H., Gore, J. C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping, 6, 14–32.

    Article  PubMed  Google Scholar 

  • Berman, R. A., & Colby, C. L. (2002). Spatial working memory in human extrastriate cortex. Physiology & Behavior, 77, 621–627.

    Article  Google Scholar 

  • Bor, D., Duncan, J., & Owen, A. M. (2001). The role of spatial configuration in tests of working memory explored with functional neuroimaging. Scandinavian Journal of Psychology, 42, 217–224.

    Article  PubMed  Google Scholar 

  • Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., Snyder, A. Z., Ollinger, J. M., Akbudak, E., Conturo, T. E., & Petersen, S. E. (2001). Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage, 14, 48–59.

    Article  PubMed  Google Scholar 

  • Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15, 523–536.

    Article  PubMed  Google Scholar 

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.

    Article  PubMed  Google Scholar 

  • Bunge, S. A., Klingberg, T., Jacobsen, R. B., & Gabrieli, J. D. (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy of Sciences, 97, 3573–3578.

    Article  Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.

    Article  PubMed  Google Scholar 

  • Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 20–26.

    Article  PubMed  Google Scholar 

  • Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.

    Article  PubMed  Google Scholar 

  • Casey, B. J., Cohen, J. D., O’Craven, K., Davidson, R. J., Irwin, W., Nelson, C. A., Noll, D. C., Hu, X., Lowe, M. J., Rosen, B. R., Truwitt, C. L., & Turski, P. A. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage, 8, 249–261.

    Article  PubMed  Google Scholar 

  • Chein, J. M., & Fiez, J. A. (2001). Dissociation of verbal working memory system components using a delayed serial recall task. Cerebral Cortex, 11, 1003–1014.

    Article  PubMed  Google Scholar 

  • Chein, J. M., Fissell, K., Jacobs, S., & Fiez, J. A. (2002). Functional heterogeneity within Broca’s area during verbal working memory. Physiology & Behavior, 77, 635–639.

    Article  Google Scholar 

  • Clark, C. R., Egan, G. F., McFarlane, A. C., Morris, P., Weber, D., Sonkkilla, C., Marcina, J., & Tochon-Danguy, H. J. (2000). Updating working memory for words: A PET activation study. Human Brain Mapping, 9, 42–54.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.

    Article  PubMed  Google Scholar 

  • Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.

    Article  PubMed  Google Scholar 

  • Collette, F., Salmon, E., Van der Linden, M., Chicherio, C., Belleville, S., Degueldre, C., Delfiore, G., & Franck, G. (1999). Regional brain activity during tasks devoted to the central executive of working memory. Cognitive Brain Research, 7, 411–417.

    Article  PubMed  Google Scholar 

  • Cornette, L., Dupont, P., Bormans, G., Mortelmans, L., & Orban, G. A. (2001). Separate neural correlates for the mnemonic components of successive discrimination and working memory tasks. Cerebral Cortex, 11, 59–72.

    Article  PubMed  Google Scholar 

  • Cornette, L., Dupont, P., Salmon, E., & Orban, G. A. (2001). The neural substrate of orientation working memory. Journal of Cognitive Neuroscience, 13, 813–828.

    Article  PubMed  Google Scholar 

  • Courtney, S. M., Petit, L., Haxby, J. V., & Ungerleider, L. G. (1998). The role of prefrontal cortex in working memory: Examining the contents of consciousness. Philosophical Transactions of the Royal Society of London: Series B, 353, 1819–1828.

    Article  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6, 39–49.

    Article  PubMed  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.

    Article  PubMed  Google Scholar 

  • Crosson, B., Rao, S. M., Woodley, S. J., Rosen, A. C., Bobholz, J. A., Mayer, A., Cunningham, J. M., Hammeke, T. A., Fuller, S. A., Binder, J. R., Cox, R. W., & Stein, E. A. (1999). Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology, 13, 171–187.

    Article  PubMed  Google Scholar 

  • Curtis, C. E., Zald, D. H., & Pardo, J. V. (2000). Organization of working memory within the human prefrontal cortex: A PET study of self-ordered object working memory. Neuropsychologia, 38, 1503–1510.

    Article  PubMed  Google Scholar 

  • Dade, L. A., Zatorre, R. J., Evans, A. C., & Jones-Gotman, M. (2001). Working memory in another dimension: Functional imaging of human olfactory working memory. NeuroImage, 14, 650–660.

    Article  PubMed  Google Scholar 

  • de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Postle, B. R., Jonides, J., & Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences, 96, 7514–7519.

    Article  Google Scholar 

  • Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt. 1), 279–306.

    Article  PubMed  Google Scholar 

  • Diwadkar, V. A., Carpenter, P. A., & Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. NeuroImage, 12, 85–99.

    Article  PubMed  Google Scholar 

  • Druzgal, T. J., & D’ Esposito, M. (2001). Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research, 10, 355–364.

    Article  PubMed  Google Scholar 

  • Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18, 42–57.

    Article  PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.

    PubMed  Google Scholar 

  • Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365, 753–756.

    Article  PubMed  Google Scholar 

  • Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., & Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces. NeuroImage, 8, 409–425.

    Article  PubMed  Google Scholar 

  • Haut, M. W., Leach, S., Kuwabara, H., Whyte, S., Callahan, T., Ducatman, A., Lombardo, L. J., & Gupta, N. (2000). Verbal working memory and solvent exposure: A positron emission tomography study. Neuropsychology, 14, 551–558.

    Article  PubMed  Google Scholar 

  • Haxby, J. V., Petit, L., Ungerleider, L. G., & Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. NeuroImage, 11(5, Pt. 1), 380–391.

    Article  PubMed  Google Scholar 

  • Honey, G. D., Bullmore, E. T., & Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage, 12, 495–503.

    Article  PubMed  Google Scholar 

  • Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G., & Parasuraman, R. (2000). Complementary neural mechanisms for tracking items in human working memory. Science, 287, 643–646.

    Article  PubMed  Google Scholar 

  • Jonides, J., Badre, D., Curtis, C., Thompson-Schill, S., & Smith, E. E. (2002). Mechanisms of conflict resolution in the prefrontal cortex. In D. T. Stuss & R. L. Knight (Eds.), The frontal lobes (pp. 233–245). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A., Marshuetz, C., & Willis, C. R. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience, 18, 5026–5034.

    PubMed  Google Scholar 

  • Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.

    Article  PubMed  Google Scholar 

  • Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95, 8410–8413.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1987). Clustering by means of medoids In Y. Dodge (Ed.), Statistical data analysis based on the L1 norm (pp. 405–416). Amsterdam: North-Holland.

    Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. New York: Wiley.

    Book  Google Scholar 

  • Klingberg, T., O’Sullivan, B. T., & Roland, P. E. (1997). Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cerebral Cortex, 7, 465–471.

    Article  PubMed  Google Scholar 

  • LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. NeuroImage, 10, 695–704.

    Article  PubMed  Google Scholar 

  • Landro, N. I., Rund, B. R., Lund, A., Sundet, K., Mjellem, N., Asbjornsen, A., Thomsen, T., Ersland, L., Lundervold, A., Smievoll, A. I., Egeland, J., Stordal, K., Roness, A., Sundberg, H., & Hugdahl, K. (2001). Honig’s model of working memory and brain activation: An fMRI study. NeuroReport, 12, 4047–4054.

    Article  PubMed  Google Scholar 

  • Levy, R., & Goldman-Rakic, P. S. (1999). Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. Journal of Neuroscience, 19, 5149–5158.

    PubMed  Google Scholar 

  • MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the 5th Berkeley Symposium on Mathematical Statistics and Probability.

  • Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(Suppl. 2), 130–144.

    Article  PubMed  Google Scholar 

  • McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., & Goldman-Rakic, P. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cerebral Cortex, 6, 600–611.

    Article  PubMed  Google Scholar 

  • Mecklinger, A., Bosch, V., Gruenewald, C., Bentin, S., & von Cramon, D. Y. (2000). What have Klingon letters and faces in common? An fMRI study on content-specific working memory systems. Human Brain Mapping, 11, 146–161.

    Article  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197–206.

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11(5, Pt. 1), 424–446.

    Article  PubMed  Google Scholar 

  • Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. European Journal of Neuroscience, 9, 1329–1339.

    Article  PubMed  Google Scholar 

  • Owen, A. M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133, 33–43.

    Article  Google Scholar 

  • Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6, 31–38.

    Article  PubMed  Google Scholar 

  • Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P., Carpenter, T. A., Minhas, P. S., Turkheimer, F. E., Williams, E. J., Robbins, T. W., Sahakian, B. J., Petrides, M., & Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11, 567–574.

    Article  PubMed  Google Scholar 

  • Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95, 7721–7726.

    Article  Google Scholar 

  • Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345.

    Article  PubMed  Google Scholar 

  • Perlstein, W. M., Elbert, T., & Stenger, V. A. (2002). Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proceedings of the National Academy of Sciences, 99, 1736–1741.

    Article  Google Scholar 

  • Petit, L., Courtney, S. M., Ungerleider, L. G., & Haxby, J. V. (1998). Sustained activity in the medial wall during working memory delays. Journal of Neuroscience, 18, 9429–9437.

    PubMed  Google Scholar 

  • Petrides, M. (1991). Functional specialization within the dorsolateral frontal cortex for serial order memory. Proceedings of the Royal Society of London: Series B, 246, 299–306.

    Article  Google Scholar 

  • Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences, 90, 878–882.

    Article  Google Scholar 

  • Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331–348.

    Article  PubMed  Google Scholar 

  • Picard, N., & Strick, P. L. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6, 342–353.

    Article  PubMed  Google Scholar 

  • Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of the left frontopolar cortex. NeuroImage, 14(1,Pt. 2), S118-S124.

    Article  PubMed  Google Scholar 

  • Pollmann, S., & von Cramon, D. Y. (2000). Object working memory and visuospatial processing: Functional neuroanatomy analyzed by event-related fMRI. Experimental Brain Research, 133, 12–22.

    Article  Google Scholar 

  • Rama, P., Martinkauppi, S., Linnankoski, I., Koivisto, J., Aronen, H. J., & Carlson, S. (2001). Working memory of identification of emotional vocal expressions: An fMRI study. NeuroImage, 13(6, Pt. 1), 1090–1101.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174–187.

    Article  PubMed  Google Scholar 

  • Rockland, K. S. (2002). Visual cortical organization at the single axon level: A beginning. Neuroscience Research, 42, 155–166.

    Article  PubMed  Google Scholar 

  • Rowe, J. B., & Passingham, R. E. (2001). Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. NeuroImage, 14(1, Pt. 1), 77–86.

    Article  PubMed  Google Scholar 

  • Rubenstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception & Performance, 27, 763–797.

    Article  Google Scholar 

  • Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9, 216–226.

    Article  PubMed  Google Scholar 

  • Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., & Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system. NeuroImage, 3, 79–88.

    Article  PubMed  Google Scholar 

  • Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: Effects of performance and aging. Proceedings of the National Academy of Sciences, 98, 2095–2100.

    Article  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    Article  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (2003). Executive control and thought. In L. R. Squire (Ed.), Fundamental neuroscience (2nd ed., pp. 1377–1394). San Diego: Academic Press.

    Google Scholar 

  • Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6, 11–20.

    Article  PubMed  Google Scholar 

  • Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus object working-memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337–356.

    Article  Google Scholar 

  • Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences, 95, 876–882.

    Article  Google Scholar 

  • Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging. NeuroImage, 11(5, Pt. 1), 392–399.

    Article  PubMed  Google Scholar 

  • Sylvester, C. Y., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., & Jonides, J. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41, 357–370.

    Article  PubMed  Google Scholar 

  • Thomas, K. M., King, S. W., Franzen, P. L., Welsh, T. F., Berkowitz, A. L., Noll, D. C., Birmaher, V., & Casey, B. J. (1999). A developmental functional MRI study of spatial working memory. NeuroImage, 10(3, Pt. 1), 327–338.

    Article  PubMed  Google Scholar 

  • Tsukiura, T., Fujii, T., Takahashi, T., Xiao, R., Inase, M., Iijima, T., Yamadori, A., & Okuda, J. (2001). Neuroanatomical discrimination between manipulating and maintaining processes involved in verbal working memory: A functional MRI study. Cognitive Brain Research, 11, 13–21.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4, 157–165.

    Article  PubMed  Google Scholar 

  • Van der Linden, M., Collette, F., Salmon, E., Delfiore, G., Degueldre, C., Luxen, A., & Franck, G. (1999). The neural correlates of updating information in verbal working memory. Memory, 7, 549–560.

    Article  PubMed  Google Scholar 

  • Wager, T. D., Jonides, J., Smith, E. E., Hernandez, L., Bryck, R., Nichols, T. E., Sylvester, C. C., Lacey, S. C., & Noll, D. C. (2002, April). Response conflict and cognitive control: Item and set-related processes in a Stroop-like task. Poster presented at the Annual Meeting of the Cognitive Neuroscience Society, San Francisco.

  • Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531.

    Article  PubMed  Google Scholar 

  • Wilson, F. A., Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.

    Article  PubMed  Google Scholar 

  • Zurowski, B., Gostomzyk, J., Gron, G., Weller, R., Schirrmeister, H., Neumeier, B., Spitzer, M., Reske, S. N., & Walter, H. (2002). Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. NeuroImage, 15, 45–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, Columbia University, 1190 Amsterdam Ave., 10027, New York, NY

    Tor D. Wager & Edward E. Smith

Authors
  1. Tor D. Wager
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Edward E. Smith
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tor D. Wager.

Additional information

This research was supported by a National Institute of Mental Health grant to the second author and a National Science Foundation Graduate Research Fellowship to the first author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wager, T.D., Smith, E.E. Neuroimaging studies of working memory:. Cognitive, Affective, & Behavioral Neuroscience 3, 255–274 (2003). https://doi.org/10.3758/CABN.3.4.255

Download citation

  • Received: 25 April 2003

  • Accepted: 01 October 2003

  • Issue Date: December 2003

  • DOI: https://doi.org/10.3758/CABN.3.4.255

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Executive Function
  • Frontal Cortex
  • Selective Attention
  • Material Type
  • Executive Process
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.