Cognitive, Affective, & Behavioral Neuroscience

, Volume 2, Issue 3, pp 264–270 | Cite as

Orbitofrontal cortex and dynamic filtering of emotional stimuli

  • Randall R. Rule
  • Arthur P. Shimamura
  • Robert T. Knight
Article
  • 601 Downloads

Abstract

Event-related potentials (ERPs) were recorded in response to mildly aversive somatosensory and auditory stimuli. Patients with orbitofrontal lesions exhibited enhanced ERPs (i.e., P3 amplitudes), as compared with control subjects. Moreover, these patients did not habituate to somatosensory stimuli across blocks of trials. The results were specific to orbitofrontal damage, since patients with damage to the dorsolateral prefrontal cortex did not exhibit enhanced P3 amplitudes. These findings suggest that damage to the orbitofrontal cortex impairs the ability to modulate or inhibit neural responses to aversive stimuli. The findings are couched in terms of dynamic filtering theory, which suggests that the orbitofrontal cortex is involved in the selection and active inhibition of neural circuits associated with emotional responses.

References

  1. Baldo, J. V., & Shimamura, A. P. (2000). Spatial and color working memory in patients with lateral prefrontal cortex lesions. Psychobiology, 28, 156–167.Google Scholar
  2. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.CrossRefPubMedGoogle Scholar
  3. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–225.CrossRefPubMedGoogle Scholar
  4. Butter, C. M. (1964). Habituation of responses to novel stimuli in monkeys with selective frontal lesions. Science, 144, 313–315.CrossRefPubMedGoogle Scholar
  5. Butter, C. M., McDonald, J. A., & Snyder, D. R. (1969). Orality, preference behavior, and reinforcement value of nonfood objects in monkeys with orbital frontal lesions. Science, 164, 1306–1307.CrossRefPubMedGoogle Scholar
  6. Chao, L. L., & Knight, R. T. (1996). Prefrontal and posterior cortical activation during auditory working memory. Cognitive Brain Research, 4, 27–37.CrossRefPubMedGoogle Scholar
  7. Damasio, A. R. (1998). The somatic marker hypothesis and the possible functions of the prefrontal cortex. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive function (pp. 103–116). Oxford: Oxford University Press.Google Scholar
  8. Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41, 81–94.CrossRefPubMedGoogle Scholar
  9. Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation: A possible prelude to violence. Science, 289, 591–594.CrossRefPubMedGoogle Scholar
  10. D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain & Cognition, 41, 66–86.CrossRefGoogle Scholar
  11. Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380, 69–72.CrossRefPubMedGoogle Scholar
  12. Harlow, J. M. (1848). Passage of an iron rod through the head. Boston Medical & Surgical Journal, 39, 389–393.Google Scholar
  13. Harlow, J. M. (1868). Recovery of an iron rod through the head. Publications of the Massachusetts Medical Society, 2, 327–347.Google Scholar
  14. Hartikainen, K., Ogawa, K. H., Soltani, M., Pepitone, M., & Knight, R. T. (2000). Altered emotional influence on visual attention subsequent to orbitofrontal damage in humans. Society for Neuroscience Abstracts, 26, 2023.Google Scholar
  15. Iversen, S. D., & Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research, 11, 376–386.CrossRefGoogle Scholar
  16. Kaipio, M.-L., Alho, K., Winkler, I., Escera, C., Surma-Aho, O., & Näätänen, R. (1999). Event-related brain potentials reveal covert distractibility in closed head injuries. NeuroReport, 10, 2125–2159.CrossRefPubMedGoogle Scholar
  17. Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography & Clinical Neurophysiology, 59, 9–20.CrossRefGoogle Scholar
  18. Knight, R. T. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383, 256–259.CrossRefPubMedGoogle Scholar
  19. Knight, R. T., Scabini, D., Woods, D. L., & Clayworth, C. C. (1989). Contributions of temporal-parietal junction to the human auditory P3. Brain Research, 502, 109–616.CrossRefPubMedGoogle Scholar
  20. Knight, R. T., Staines, W. R., Swick, D., & Chao, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologica, 101, 159–178.CrossRefPubMedGoogle Scholar
  21. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRefPubMedGoogle Scholar
  22. Macmillan, M. (1986). A wonderful journey through skull and brains: The travels of Mr. Gage’s tamping iron. Brain & Cognition, 5, 67–107.CrossRefGoogle Scholar
  23. Macmillan, M. (1999). An odd kind of fame: Stories of Phineas Gage. Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  24. Mattson, A. J., & Levin, H. S. (1990). Frontal lobe dysfunction following closed head injury. Journal of Nervous & Mental Disease, 178, 282–291.CrossRefGoogle Scholar
  25. McGaugh, J. L. (2000). Memory: A century of consolidation. Science, 287, 248–251.CrossRefPubMedGoogle Scholar
  26. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefPubMedGoogle Scholar
  27. Opitz, B., Mecklinger, A., Friederici, A. D., & von Cramon, D. Y. (1999). The functional neuroanatomy of novelty processing: Integrating ERP and fMRI results. Cerebral Cortex, 9, 379–391.CrossRefPubMedGoogle Scholar
  28. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.Google Scholar
  29. Petrides, M. (1998). Specialized systems for the processing of mnemonic information within the primate frontal cortex. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive function (pp. 103–116). Oxford: Oxford University Press.Google Scholar
  30. Petrides, M., & Pandya, D. N. (1994). Comparative architectonic analysis of the human and the macaque frontal cortex. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 17–58). Amsterdam: Elsevier.Google Scholar
  31. Puce, A., Constable, R. T., Luby, M. L., McCarthy, G., Nobre, A. C., Spencer, D. D., Gore, J. C., & Allison, T. (1995). Functional magnetic resonance imaging of sensory and motor cortex: Comparison with electrophysiological localization. Journal of Neurosurgery, 83, 262–270.CrossRefPubMedGoogle Scholar
  32. Roberts, N. A., Levens, S. M., McCoy, K., Werner, K., Beer, J. S., Scabini, D., & Knight, R. T. (2001). Orbitofrontal cortex and activation of defensive responses. Society for Neuroscience Abstracts, 27, 1705.Google Scholar
  33. Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.CrossRefPubMedGoogle Scholar
  34. Rolls, E. T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotionrelated learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery & Psychiatry, 57, 1518–1524.CrossRefGoogle Scholar
  35. Shallice, T., & Burgess, P. (1993). Supervisory control of action and thought selection. In A. Baddeley & L. Weiskrantz (Eds.), Attention: Selection, awareness, and control: A tribute to Donald Broadbent (pp. 171–187). New York: Oxford University Press, Clarendon Press.Google Scholar
  36. Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology, 28, 207–218.Google Scholar
  37. Shimamura, A. P. (in press). Muybridge in motion: Travels in art, psychology, and neurology. History of Photography. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.Google Scholar
  38. Solbakk, A. K., Reinvang, I., Nielsen, C., & Sundet, K. (1999). ERP indicators of disturbed attention in mild closed head injury: A frontal lobe syndrome? Psychophysiology, 36, 802–817.CrossRefPubMedGoogle Scholar
  39. Soltani, M., & Knight, R.T. (in press). Neural origins of the P300. Critical Reviews in Neurobiology.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2002

Authors and Affiliations

  • Randall R. Rule
    • 1
    • 2
  • Arthur P. Shimamura
    • 1
    • 2
  • Robert T. Knight
    • 1
    • 2
  1. 1.Department of Psychology (MC1650)University of CaliforniaBerkeley
  2. 2.Veterans Affairs Health Care SystemMartinez

Personalised recommendations