Cognitive, Affective, & Behavioral Neuroscience

, Volume 10, Issue 4, pp 523–540 | Cite as

Event-related brain potentials and the efficiency of visual search for vertically and horizontally oriented stimuli

  • Bruno KoppEmail author
  • Jasmin Kizilirmak
  • Carolin Liebscher
  • Julia Runge
  • Karl Wessel


Reports that visual search is more efficient for vertically than for horizontally shaded objects suggested that search is influenced by a priori knowledge about the source of light. In this study, we examined search for targets defined by the orientation of luminance gradients and measured event-related brain potentials (ERPs). In Experiment 1, we examined search for stimuli that comprised gradual luminance differences. Response times showed the expected orientation anisotropy effect. ERP amplitudes in the P1 latency range were slightly more positive in response to horizontally oriented stimuli, whereas P3 amplitudes were more positive in response to nonsingleton vertically oriented stimuli. Experiment 2 compared search for stimuli that comprised gradual versus step differences in luminance. All the anisotropies that we observed in Experiment 1 could be replicated in Experiment 2. Moreover, these anisotropies were not dependent on the type of the luminance gradient. This finding is inconsistent with the view that search efficiency is influenced by a priori knowledge about the source of light. The behavioral and electrophysiological data are consistent with a context model of visual search. We propose that contextual modulation reduces redundancy and contributes to computing the saliency of visual information by implementing divisive normalization and multiplicative filtering.


Visual Search Perceptive Field Orientation Anisotropy Oriented Stimulus Visual Search Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, W. J. (2007). A common light-prior for visual search, shape and reflectance judgments. Journal of Vision, 7(11, Art. 11), 1–7.CrossRefGoogle Scholar
  2. Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the “light-from-above” prior. Nature Neuroscience, 7, 1057–1058.PubMedCrossRefGoogle Scholar
  3. Aks, D. J., & Enns, J. T. (1992). Visual search for direction of shading is influenced by apparent depth. Perception & Psychophysics, 52, 63–74.CrossRefGoogle Scholar
  4. Albrecht, D. G., & Geisler, W. S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience, 7, 531–546.PubMedCrossRefGoogle Scholar
  5. Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93–120.PubMedCrossRefGoogle Scholar
  6. Barenholtz, E., Cohen, E. H., Feldman, J., & Singh, M. (2003). Detection of change in shape: An advantage for concavities. Cognition, 89, 1–9.PubMedCrossRefGoogle Scholar
  7. Barlow, H. (2001). Redundancy reduction revisited. Network: Computation in Neural Systems, 12, 241–253.Google Scholar
  8. Brewster, D. (1826). On the optical illusion of the conversion of cameos into intaglios and of intaglios into cameos with an account of other analogous phenomena. Edinburgh Journal of Science, 4, 99–108.Google Scholar
  9. Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25, 10577–10597.PubMedCrossRefGoogle Scholar
  10. Chun, M. M., & Wolfe, J. M. (1996). Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology, 30, 39–78.PubMedCrossRefGoogle Scholar
  11. Di Russo, F., Aprile, T., Spitoni, G., & Spinelli, D. (2007). Impaired visual processing of contralesional stimuli in neglect patients: A visual-evoked potential study. Brain, 131, 842–854.PubMedCrossRefGoogle Scholar
  12. Di Russo, F., Martìnez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15, 95–111.PubMedCrossRefGoogle Scholar
  13. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.PubMedCrossRefGoogle Scholar
  14. Essock, E. A., DeFord, J. K., Hansen, B. C., & Sinai, M. J. (2003). Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: A horizontal effect. Vision Research, 43, 1329–1335.PubMedCrossRefGoogle Scholar
  15. Gao, D., Mahadevan, V., & Vasconcelos, N. (2008). On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision, 8(7, Art. 13), 1–18.PubMedCrossRefGoogle Scholar
  16. Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annual Review of Psychology, 59, 167–192.PubMedCrossRefGoogle Scholar
  17. Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography & Clinical Neurophysiology, 55, 468–484.CrossRefGoogle Scholar
  18. Hansen, B. C., & Essock, E. A. (2004). A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. Journal of Vision, 4, 1044–1060.PubMedCrossRefGoogle Scholar
  19. Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.PubMedCrossRefGoogle Scholar
  20. Hillyard, S. A., Teder-Sälejärvi, W. A., & Münte, T. F. (1998). Temporal dynamics of early perceptual processing. Current Opinion in Neurobiology, 8, 202–210.PubMedCrossRefGoogle Scholar
  21. Hou, C., Pettet, M. W., Vildavski, V. Y., & Norcia, A. M. (2006). Neural correlates of shape-from-shading. Vision Research, 46, 1080–1090.PubMedCrossRefGoogle Scholar
  22. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.PubMedGoogle Scholar
  23. Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49, 1295–1306.PubMedCrossRefGoogle Scholar
  24. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2, 194–203.PubMedCrossRefGoogle Scholar
  25. Jung, R., & Spillmann, L. (1970). Receptive-field estimation and perceptual integration in human vision. In F. A. Young & D. B. Lindsley (Eds.), Early experience and visual information processing in perceptual and reading disorders (pp. 181–197). Washington, DC: National Academy of Sciences.Google Scholar
  26. Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.PubMedCrossRefGoogle Scholar
  27. Kleffner, D. A., & Ramachandran, V. S. (1992). On the perception of shape from shading. Perception & Psychophysics, 52, 18–36.CrossRefGoogle Scholar
  28. Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577.PubMedCrossRefGoogle Scholar
  29. Kopp, B. (2008). The P300 component of the event-related brain potential and Bayes’ theorem. In M.-K. Sun (Ed.), Cognitive sciences at the leading edge (pp. 87–96). New York: Nova.Google Scholar
  30. Lee, T. S., Yang, C. F., Romero, R., & Mumford, D. (2002). Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nature Neuroscience, 5, 589–597.PubMedCrossRefGoogle Scholar
  31. Li, B., Peterson, M. R., & Freeman, R. D. (2003). Oblique effect: A neural basis in the visual cortex. Journal of Neurophysiology, 90, 204–217.PubMedCrossRefGoogle Scholar
  32. Li, Z. (1999). Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proceedings of the National Academy of Sciences, 96, 10530–10535.CrossRefGoogle Scholar
  33. Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6, 9–16.PubMedCrossRefGoogle Scholar
  34. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
  35. Luck, S. J., & Hillyard, S. A. (1990). Electrophysiological evidence for parallel and serial processing during visual search. Perception & Psychophysics, 48, 603–617.CrossRefGoogle Scholar
  36. Mamassian, P., Jentzsch, I., Bacon, B. A., & Schweinberger, S. R. (2003). Neural correlates of shape from shading. NeuroReport, 14, 971–975.PubMedCrossRefGoogle Scholar
  37. Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  38. Miller, J. (1988). A warning about median reaction time. Journal of Experimental Psychology: Human Perception & Performance, 14, 539–543.CrossRefGoogle Scholar
  39. Nothdurft, H. C. (1991). Texture segmentation and pop-out from orientation contrast. Vision Research, 31, 1073–1078.PubMedCrossRefGoogle Scholar
  40. Palmer, J. (1995). Attention in visual search: Distinguishing four causes of a set size effect. Current Directions in Psychological Science, 4, 118–123.CrossRefGoogle Scholar
  41. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., et al. (2000). Guidelines for using human eventrelated potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152.PubMedCrossRefGoogle Scholar
  42. Prados, E., & Faugeras, O. (2006). Shape from shading. In N. Paragios, Y. Chen, & O. Faugeras (Eds.), Handbook of mathematical models in computer vision (pp. 375–388). Berlin: Springer.CrossRefGoogle Scholar
  43. Ramachandran, V. S. (1988). Perception of shape from shading. Nature, 331, 163–166.PubMedCrossRefGoogle Scholar
  44. Ramachandran, V. S., & Rogers-Ramachandran, D. (2008). Seeing is believing. Scientific American Mind, 19, 16–18.CrossRefGoogle Scholar
  45. Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4, 819–825.PubMedCrossRefGoogle Scholar
  46. Seriès, P., Lorenceau, J., & Frègnac, Y. (2003). The “silent” surround of V1 receptive fields: Theory and experiments. Journal of Physiology, 97, 453–474.PubMedGoogle Scholar
  47. Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.PubMedCrossRefGoogle Scholar
  48. Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 38, 343–358.PubMedCrossRefGoogle Scholar
  49. Spillmann, L. (1994). The Hermann grid illusion: A tool for studying human perceptive field organization. Perception, 23, 691–708.PubMedCrossRefGoogle Scholar
  50. Sun, J., & Perona, P. (1998). Where is the sun? Nature Neuroscience, 1, 183–184.PubMedCrossRefGoogle Scholar
  51. Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological Review, 114, 71–103.PubMedCrossRefGoogle Scholar
  52. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRefGoogle Scholar
  53. Treisman, A. M., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15–48.PubMedCrossRefGoogle Scholar
  54. Van Zoest, W., Giesbrecht, B., Enns, J., & Kingstone, A. (2006). New reflections in visual search: Interitem symmetry matters! Psychological Science, 17, 535–542.PubMedCrossRefGoogle Scholar
  55. Wainwright, M. J., Schwartz, O., & Simoncelli, E. P. (2002). Natural image statistics and divisive normalization: Modeling nonlinearities and adaptation in cortical neurons. In R. P. N. Rao, B. A. Olshausen, & M. S. Lewicki (Eds.), Probabilistic models of the brain: Perception and neural function (pp. 203–222). Cambridge, MA: MIT Press.Google Scholar
  56. Wolfe, J. M. (1998). What can one million trials tell us about visual search? Psychological Science, 9, 33–39.CrossRefGoogle Scholar
  57. Wolfe, J. M. (2007). Guided Search 4.0: Current progress with a model of visual search. In W. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York: Oxford University Press.Google Scholar
  58. Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 495–501.PubMedCrossRefGoogle Scholar
  59. Wolfe, J. M., Klempen, N. L., & Shulman, E. P. (1999). Which end is up? Two representations of orientation in visual search. Vision Research, 39, 2075–2086.PubMedCrossRefGoogle Scholar
  60. Wolfe, J. M., Yee, A., & Friedman-Hill, S. R. (1992). Curvature is a basic feature for visual search tasks. Perception, 21, 465–480.PubMedCrossRefGoogle Scholar
  61. Wu, M. C., David, S. V., & Gallant, J. L. (2006). Complete functional characterization of sensory neurons by system identification. Annual Review of Neuroscience, 29, 477–505.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Bruno Kopp
    • 1
    • 2
    Email author
  • Jasmin Kizilirmak
    • 1
    • 2
    • 3
  • Carolin Liebscher
    • 1
    • 2
  • Julia Runge
    • 1
    • 2
  • Karl Wessel
    • 1
    • 2
  1. 1.Cognitive NeurologyUniversity of Technology Carolo-Wilhelmina BraunschweigBraunschweigGermany
  2. 2.Braunschweig HospitalBraunschweigGermany
  3. 3.Department of PsychologyPhilipps University MarburgGermany

Personalised recommendations