Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Cognitive, Affective, & Behavioral Neuroscience
  3. Article
Moment-to-moment fluctuations in fMRI amplitude and interregion coupling are predictive of inhibitory performance
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Contiguity of proactive and reactive inhibitory brain areas: a cognitive model based on ALE meta-analyses

03 August 2020

Gioele Gavazzi, Fabio Giovannelli, … Maria Pia Viggiano

Individual differences in intracortical inhibition predict motor-inhibitory performance

17 August 2019

Jason L. He, I. Fuelscher, … C. Hyde

Dynamic reconfiguration of functional brain networks supporting response inhibition in a stop-signal task

06 August 2020

Bin Wang, Yaqing Hao, … Ting Yan

Midfrontal neural dynamics distinguish between general control and inhibition-specific processes in the stopping of motor actions

10 September 2019

Jakob Kaiser, Natalie Annette Simon, … Simone Schütz-Bosbach

Individual differences in local functional brain connectivity affect TMS effects on behavior

26 June 2020

Carsten Gießing, Mohsen Alavash, … Christiane M. Thiel

Dual-tDCS over the right prefrontal cortex does not modulate stop-signal task performance

04 January 2021

Maximilian A. Friehs, Lisa Brauner & Christian Frings

Contrasting time and frequency domains: ERN and induced theta oscillations differentially predict post-error behavior

17 April 2020

Paul J. Beatty, George A. Buzzell, … Craig G. McDonald

Frontal midline theta differentiates separate cognitive control strategies while still generalizing the need for cognitive control

19 July 2021

Jarrod Eisma, Eric Rawls, … Connie Lamm

Cortical silent period reflects individual differences in action stopping performance

26 July 2021

Mario Paci, Giulio Di Cosmo, … Marcello Costantini

Download PDF
  • Published: June 2010

Moment-to-moment fluctuations in fMRI amplitude and interregion coupling are predictive of inhibitory performance

  • Srikanth Padmala1 &
  • Luiz Pessoa1 

Cognitive, Affective, & Behavioral Neuroscience volume 10, pages 279–297 (2010)Cite this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We investigated how moment-to-moment fluctuations in fMRI amplitude and interregional coupling are linked to behavioral performance during a stop signal task. To quantify the relationship between single-trial amplitude and behavior on a trial-by-trial basis, we modeled the probability of successful inhibition as a function of response amplitude via logistic regression analysis. At the group level, significant logistic slopes were observed in, among other regions, the inferior frontal gyrus (IFG), caudate, and putamen, all bilaterally. Furthermore, we investigated how trial-by-trial fluctuations in responses in attentional regions covaried with fluctuations in inhibition-related regions. The coupling between several frontoparietal attentional regions and the right IFG increased during successful versus unsuccessful performance, suggesting that efficacious network interactions are important in determining behavioral outcome during the stop signal task. In particular, the link between responses in the right IFG and behavior were moderated by moment-to-moment fluctuations in evoked responses in the left intraparietal sulcus. A supplemental figure for this article may be downloaded from http:// cabn.psychonomic-journals.org/content/supplemental.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Aron, A. R., Durston, S., Eagle, D. W., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a frontobasal-ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27, 11860–11864.

    Article  PubMed  Google Scholar 

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115–116.

    Article  PubMed  Google Scholar 

  • Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience, 26, 2424–2433.

    Article  PubMed  Google Scholar 

  • Boehler, C. N., Münte, T. F., Krebs, R. M., Heinze, H.-J., Schoenfeld, M. A., & Hopf, J.-M. (2009). Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cerebral Cortex, 19, 134–145.

    Article  PubMed  Google Scholar 

  • Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., et al. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology & Psychiatry, 46, 94–111.

    Article  Google Scholar 

  • Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114, 376–397.

    Article  PubMed  Google Scholar 

  • Brass, M., Derrfuss, J., Forstmann, B., & von Cramon, D. Y. (2005). The role of the inferior frontal junction area in cognitive control. Trends in Cognitive Sciences, 9, 314–316.

    Article  PubMed  Google Scholar 

  • Brass, M., Wenke, D., Spengler, S., & Waszak, F. (2009). Neural correlates of overcoming interference from instructed and implemented stimulus-response associations. Journal of Neuroscience, 29, 1766–1772.

    Article  PubMed  Google Scholar 

  • Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., & Movshon, J. A. (1996). A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 13, 87–100.

    Article  PubMed  Google Scholar 

  • Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.

    Article  PubMed  Google Scholar 

  • Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. N., et al. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of Cognitive Neuroscience, 9, 835–847.

    Article  Google Scholar 

  • Chamberlain, S. R., Hampshire, A., Müller, U., Rubia, K., Del Campo, N., Craig, K., et al. (2009). Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study. Biological Psychiatry, 65, 550–555.

    Article  PubMed  Google Scholar 

  • Chambers, C. D., Bellgrove, M. A., Gould, I. C., English, T., Garavan, H., McNaught, E., et al. (2007). Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. Journal of Neurophysiology, 98, 3638–3647.

    Article  PubMed  Google Scholar 

  • Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I. H., et al. (2006). Executive “brake failure” following deactivation of human frontal lobe. Journal of Cognitive Neuroscience, 18, 444–455.

    PubMed  Google Scholar 

  • Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33, 631–646.

    Article  Google Scholar 

  • Chen, C.-Y., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., & Juan, C.-H. (2009). Control of prepotent responses by the superior medial frontal cortex. NeuroImage, 44, 537–545.

    Article  PubMed  Google Scholar 

  • Chikazoe, J., Jimura, K., Asari, T., Yamashita, K., Morimoto, H., Hirose, S., et al. (2009). Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cerebral Cortex, 19, 146–152.

    Article  PubMed  Google Scholar 

  • Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6, 93–103.

    Article  PubMed  Google Scholar 

  • Colzato, L. S., van den Wildenberg, W. P., & Hommel, B. (2007). Impaired inhibitory control in recreational cocaine users. PLoS ONE, 2, e1143.

    Article  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.

    Article  PubMed  Google Scholar 

  • Cox, R. W. (1996). AFNI: Software for the analysis and visualization of functional magnetic resonance neuroimages. Computers & Biomedical Research, 29, 162–173.

    Article  Google Scholar 

  • Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.

    Article  Google Scholar 

  • Duann, J.-R., Ide, J. S., Luo, X., & Li, C.-S. R. (2009). Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. Journal of Neuroscience, 29, 10171–10179.

    Article  PubMed  Google Scholar 

  • Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P., & Robbins, T. W. (2008). Stop-signal reaction-time task performance: Role of prefrontal cortex and subthalamic nucleus. Cerebral Cortex, 18, 178–188.

    Article  PubMed  Google Scholar 

  • Eagle, D. M., & Robbins, T. W. (2003). Inhibitory control in rats performing a stop-signal reaction-time task: Effects of lesions of the medial striatum and d-amphetamine. Behavioral Neuroscience, 117, 1302–1317.

    Article  PubMed  Google Scholar 

  • Eimer, M. (1993). Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biological Psychology, 35, 123–138.

    Article  PubMed  Google Scholar 

  • Floden, D., & Stuss, D. T. (2006). Inhibitory control is slowed in patients with right superior medial frontal damage. Journal of Cognitive Neuroscience, 18, 1843–1849.

    Article  PubMed  Google Scholar 

  • Forstmann, B. U., Jahfari, S., Scholte, H. S., Wolfensteller, U., van den Wildenberg, W. P. M., & Ridderinkhof, K. R. (2008). Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: A model-based approach. Journal of Neuroscience, 28, 9790–9796.

    Article  PubMed  Google Scholar 

  • Garavan, H., Ross, T. J., Kaufman, J., & Stein, E. A. (2003). A midline dissociation between error-processing and response-conflict monitoring. NeuroImage, 20, 1132–1139.

    Article  PubMed  Google Scholar 

  • Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17, 1820–1829.

    Article  PubMed  Google Scholar 

  • Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences, 96, 8301–8306.

    Article  Google Scholar 

  • Gehring, W., Goss, B., Coles, M., Meyer, D., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.

    Article  Google Scholar 

  • Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.

    Google Scholar 

  • Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870–878.

    Article  PubMed  Google Scholar 

  • Hester, R., Fassbender, C., & Garavan, H. (2004). Individual differences in error processing: A review and reanalysis of three eventrelated fMRI studies using the GO/NOGO task. Cerebral Cortex, 14, 986–994.

    Article  PubMed  Google Scholar 

  • Hester, R., Madeley, J., Murphy, K., & Mattingley, J. B. (2009). Learning from errors: Error-related neural activity predicts improvements in future inhibitory control performance. Journal of Neuroscience, 29, 7158–7165.

    Article  PubMed  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Kalaska, J. F., & Crammond, D. J. (1995). Deciding not to GO: Neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. Cerebral Cortex, 5, 410–428.

    Article  PubMed  Google Scholar 

  • Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex. Neuropsychologia, 39, 1263–1276.

    Article  PubMed  Google Scholar 

  • Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: The dangers of double dipping. Nature Neuroscience, 12, 535–540.

    Article  PubMed  Google Scholar 

  • Leber, A. B., Turk-Browne, N. B., & Chun, M. M. (2008). Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proceedings of the National Academy of Sciences, 105, 13592–13597.

    Article  Google Scholar 

  • Leung, H.-C., & Cai, W. (2007). Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. Journal of Neuroscience, 27, 9893–9900.

    Article  PubMed  Google Scholar 

  • Li, C.-S. R., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing. Journal of Neuroscience, 26, 186–192.

    Article  PubMed  Google Scholar 

  • Li, C.-S. R., Yan, P., Chao, H. H., Sinha, R., Paliwal, P., Constable, R. T., et al. (2008). Error-specific medial cortical and subcortical activity during the stop signal task: A functional magnetic resonance imaging study. Neuroscience, 155, 1142–1151.

    Article  PubMed  Google Scholar 

  • Li, C.-S. R., Yan, P., Sinha, R., & Lee, T.-W. (2008). Subcortical processes of motor response inhibition during a stop signal task. NeuroImage, 41, 1352–1363.

    Article  PubMed  Google Scholar 

  • Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event-related fMRI study of response inhibition. Human Brain Mapping, 12, 100–109.

    Article  PubMed  Google Scholar 

  • Lim, S. L., Padmala, S., & Pessoa, L. (2009). Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions. Proceedings of the National Academy of Sciences, 106, 16841–16846.

    Article  Google Scholar 

  • Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490.

    Article  Google Scholar 

  • Logan, G. D. (1994). On the ability to inhibit thought and action: A user’s guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 189–239). San Diego: Academic Press.

    Google Scholar 

  • Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91, 295–327.

    Article  Google Scholar 

  • Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and inhibitory control. Psychological Science, 8, 60–64.

    Article  Google Scholar 

  • Maddock, R. J. (1999). The retrosplenial cortex and emotion: New insights from functional neuroimaging of the human brain. Trends in Neurosciences, 22, 310–316.

    Article  PubMed  Google Scholar 

  • Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H., & Garavan, H. (2006). The anterior cingulate and error avoidance. Journal of Neuroscience, 26, 4769–4773.

    Article  PubMed  Google Scholar 

  • Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a go/nogo response inhibition task. Human Brain Mapping, 12, 131–143.

    Article  PubMed  Google Scholar 

  • Nachev, P., Wydell, H., O’Neill, K., Husain, M., & Kennard, C. (2007). The role of the pre-supplementary motor area in the control of action. NeuroImage, 36(Suppl. 2), T155-T163.

    Article  PubMed  Google Scholar 

  • Padmala, S., & Pessoa, L. (2008). Affective learning enhances visual detection and responses in primary visual cortex. Journal of Neuroscience, 28, 6202–6210.

    Article  PubMed  Google Scholar 

  • Padmala, S., & Pessoa, L. (2010). Interactions between cognition and motivation during response inhibition. Neuropsychologia, 48, 558–565.

    Article  PubMed  Google Scholar 

  • Pessoa, L., Gutierrez, E., Bandettini, P. B., & Ungerleider, L. G. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35, 975–987.

    Article  PubMed  Google Scholar 

  • Pessoa, L., & Padmala, S. (2005). Quantitative prediction of perceptual decisions during near-threshold fear detection. Proceedings of the National Academy of Sciences, 102, 5612–5617.

    Article  Google Scholar 

  • Pessoa, L., & Ungerleider, L. G. (2004). Top-down mechanisms for working memory and attentional processes. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (3rd ed., pp. 919–930). Cambridge, MA: MIT Press.

    Google Scholar 

  • Picton, T. W., Stuss, D. T., Alexander, M. P., Shallice, T., Binns, M. A., & Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826–838.

    Article  PubMed  Google Scholar 

  • Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience, 28, 2745–2752.

    Article  PubMed  Google Scholar 

  • Purushothaman, G., & Bradley, D. C. (2005). Neural population code for fine perceptual decisions in area MT. Nature Neuroscience, 8, 99–106.

    Article  PubMed  Google Scholar 

  • Ramautar, J. R., Slagter, H. A., Kok, A., & Ridderinkhof, K. R. (2006). Probability effects in the stop-signal paradigm: The insula and the significance of failed inhibition. Brain Research, 1105, 143–154.

    Article  PubMed  Google Scholar 

  • Ratcliffe, S. J., & Shults, J. (2008). GEEQBOX: A MATLAB toolbox for generalized estimating equations and quasi-least squares. Journal of Statistical Software, 25, 1–14.

    Google Scholar 

  • Ray, N. J., Jenkinson, N., Brittain, J., Holland, P., Joint, C., Nandi, D., et al. (2009). The role of the subthalamic nucleus in response inhibition: Evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia, 47, 2828–2834.

    Article  PubMed  Google Scholar 

  • Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3, 940–945.

    Article  PubMed  Google Scholar 

  • Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351–358.

    Article  PubMed  Google Scholar 

  • Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, 28, 1163–1177.

    Article  PubMed  Google Scholar 

  • Swick, D., Ashley, V., & Turken, A. U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9, 102.

    Article  PubMed  Google Scholar 

  • Sylvester, C. M., Shulman, G. L., Jack, A. I., & Corbetta, M. (2007). Asymmetry of anticipatory activity in visual cortex predicts the locus of attention and perception. Journal of Neuroscience, 27, 14424–14433.

    Article  PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). A co-planar stereotaxic atlas of the human brain. New York: Thieme.

    Google Scholar 

  • van den Wildenberg, W. P., van Boxtel, G. J., van der Molen, M. W., Bosch, D. A., Speelman, J. D., & Brunia, C. H. (2006). Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. Journal of Cognitive Neuroscience, 18, 626–636.

    Article  PubMed  Google Scholar 

  • Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12, 418–424.

    Article  PubMed  Google Scholar 

  • Vink, M., Kahn, R. S., Raemaekers, M., van den Heuvel, M., Boersma, M., & Ramsey, N. F. (2005). Function of striatum beyond inhibition and execution of motor responses. Human Brain Mapping, 25, 336–344.

    Article  PubMed  Google Scholar 

  • Williams, B., Ponesse, J., Schachar, R., Logan, G., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35, 205–213.

    Article  PubMed  Google Scholar 

  • Xue, G., Aron, A. R., & Poldrack, R. A. (2008). Common neural substrates for inhibition of spoken and manual responses. Cerebral Cortex, 18, 1923–1932.

    Article  PubMed  Google Scholar 

  • Zeger, S. L., & Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121–130.

    Article  PubMed  Google Scholar 

  • Zhou, D., Thompson, W. K., & Siegle, G. (2009). MATLAB toolbox for functional connectivity. NeuroImage, 47, 1590–1607.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth St., 47405, Bloomington, IN

    Srikanth Padmala & Luiz Pessoa

Authors
  1. Srikanth Padmala
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Luiz Pessoa
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Srikanth Padmala or Luiz Pessoa.

Additional information

Support for this work was provided in part by the National Institute of Mental Health (Grant R01 MH071589) and the Indiana METACyt Initiative of Indiana University, funded in part through a major grant from the Lilly Endowment, Inc.

Electronic supplementary material

Supplementary material, approximately 340 KB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Padmala, S., Pessoa, L. Moment-to-moment fluctuations in fMRI amplitude and interregion coupling are predictive of inhibitory performance. Cognitive, Affective, & Behavioral Neuroscience 10, 279–297 (2010). https://doi.org/10.3758/CABN.10.2.279

Download citation

  • Received: 24 August 2009

  • Accepted: 17 November 2009

  • Issue Date: June 2010

  • DOI: https://doi.org/10.3758/CABN.10.2.279

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Response Inhibition
  • Inferior Frontal Gyrus
  • Stop Signal Task
  • Stop Trial
  • Successful Inhibition
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.200.171.156

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.