Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function

  • Mark S. Gilzenrat
  • Sander Nieuwenhuis
  • Marieke Jepma
  • Jonathan D. Cohen
Article
  • 2.7k Downloads

Abstract

An important dimension of cognitive control is the adaptive regulation of the balance between exploitation (pursuing known sources of reward) and exploration (seeking new ones) in response to changes in task utility. Recent studies have suggested that the locus coeruleus-norepinephrine system may play an important role in this function and that pupil diameter can be used to index locus coeruleus activity. On the basis of this, we reasoned that pupil diameter may correlate closely with control state and associated changes in behavior. Specifically, we predicted that increases in baseline pupil diameter would be associated with decreases in task utility and disengagement from the task (exploration), whereas reduced baseline diameter (but increases in task-evoked dilations) would be associated with task engagement (exploitation). Findings in three experiments were consistent with these predictions, suggesting that pupillometry may be useful as an index of both control state and, indirectly, locus coeruleus function.

References

  1. Aston-Jones, G. (1985). Behavioral functions of locus coeruleus derived from cellular attributes. Physiological Psychology, 13, 118–126.Google Scholar
  2. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.PubMedCrossRefGoogle Scholar
  3. Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., & Shipley, M. T. (1986). The brain nucleus locus coeruleus: Restricted afferent control of a broad efferent network. Science, 234, 734–737.PubMedCrossRefGoogle Scholar
  4. Aston-Jones, G., Foote, S. L., & Bloom, F. E. (1984). Anatomy and physiology of locus coeruleus neurons: Functional implications. In M. Ziegler & C. R. Lake (Eds.), Norepinephrine: Frontiers of clinical neuroscience (Vol. 2, pp. 92–116). Baltimore, MD: Williams & Wilkins.Google Scholar
  5. Aston-Jones, G., Rajkowski, J., & Kubiak, P. (1997). Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience, 80, 697–715.PubMedCrossRefGoogle Scholar
  6. Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 14, 4467–4480.PubMedGoogle Scholar
  7. Aston-Jones, G., Rajkowski, J., Lu, W., Zhu, Y., Cohen, J. D., & Morecraft, R. J. (2002). Prominent projections from the orbital prefrontal cortex to the locus coeruleus in monkey. Society for Neuroscience Abstracts, 28, 86–89.Google Scholar
  8. Aston-Jones, G., Shipley, M. T., Chouvet, G., Ennis, M., van Bockstaele, E., Pieribone, V., et al. (1991). Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. In C. D. Barnes & O. Pompeiano (Eds.), Progress in brain research (Vol. 88, pp. 47–75). New York: Elsevier.Google Scholar
  9. Beatty, J. (1982a). Phasic not tonic pupillary responses vary with auditory vigilance performance. Psychophysiology, 19, 167–172.PubMedCrossRefGoogle Scholar
  10. Beatty, J. (1982b). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.PubMedCrossRefGoogle Scholar
  11. Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7, 356–366.CrossRefGoogle Scholar
  12. Bouret, S., & Sara, S. J. (2005). Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences, 28, 574–582.PubMedCrossRefGoogle Scholar
  13. Bradshaw, J. L. (1969). Background light intensity and the pupillary response in a reaction time task. Psychonomic Science, 14, 271–272.Google Scholar
  14. Broadbent, D. E. (1979). Human performance and noise. In C. M. Harris (Ed.), Handbook of noise control (pp. 17.1–17.20). New York: McGraw-Hill.Google Scholar
  15. Clayton, E. C., Rajkowski, J., Cohen, J. D., & Aston-Jones, G. (2004). Phasic activation of monkey locus coeruleus neurons by simple decisions in a forced choice task. Journal of Neuroscience, 24, 9914–9920.PubMedCrossRefGoogle Scholar
  16. Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? Exploration versus exploitation. Philosophical Transactions of the Royal Society B, 362, 933–942.CrossRefGoogle Scholar
  17. Critchley, H. D., Tang, J., Glaser, D., Butterworth, B., & Dolan, R. J. (2005). Anterior cingulate activity during error and autonomic response. NeuroImage, 27, 885–895.PubMedCrossRefGoogle Scholar
  18. D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science, 319, 1264–1267.PubMedCrossRefGoogle Scholar
  19. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879.PubMedCrossRefGoogle Scholar
  20. Duffy, E. (1957). The psychological significance of the concept of “arousal” or “activation.” Psychological Review, 64, 265–275.PubMedCrossRefGoogle Scholar
  21. Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 66, 187–201.CrossRefGoogle Scholar
  22. Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry? Proceedings of the National Academy of Sciences, 105, 1704–1709.CrossRefGoogle Scholar
  23. Elam, M., Svensson, T. H., & Thoren, P. (1986). Locus coeruleus neurons and sympathetic nerves: Activation by cutaneous sensory afferents. Brain Research, 366, 254–261.PubMedCrossRefGoogle Scholar
  24. Foote, S. L., Aston-Jones, G., & Bloom, F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences, 77, 3033–3037.CrossRefGoogle Scholar
  25. Gilzenrat, M. S., Holmes, B. D., Rajkowski, J., Aston-Jones, G., & Cohen, J. D. (2002). Simplified dynamics in a model of noradrenergic modulation of cognitive performance. Neural Networks, 15, 647–663.PubMedCrossRefGoogle Scholar
  26. Granholm, E., Asarnow, R. F., Sarkin, A. J., & Dykes, K. L. (1996). Pupillary responses index cognitive resource limitations. Psychophysiology, 33, 457–461.PubMedCrossRefGoogle Scholar
  27. Hanoch, Y., & Vitouch, O. (2004). When less is more: Information, emotional arousal and the ecological reframing of the Yerkes-Dodson law. Theory & Psychology, 14, 427–452.CrossRefGoogle Scholar
  28. Hilton, S. M., & Smith, P. R. (1984). Ventral medullary neurones excited from the hypothalamic and mid-brain defence areas. Journal of the Autonomic Nervous System, 11, 35–42.PubMedCrossRefGoogle Scholar
  29. Hobson, J. A., McCarley, R. W., & Wyzinski, P. W. (1975). Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science, 189, 55–58.PubMedCrossRefGoogle Scholar
  30. Hockey, G. R. J. (1978). Effects of noise on human work efficiency. In D. N. May (Ed.), Handbook of noise assessment (pp. 335–372). New York: Van Nostrand-Reinhold.Google Scholar
  31. Hou, R. H., Freeman, C., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2005). Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology, 181, 537–549.PubMedCrossRefGoogle Scholar
  32. Janisse, M. P. (1977). Pupillometry: The psychology of the pupillary response. Washington, DC: Hemisphere.Google Scholar
  33. Jouvet, M. (1969). Biogenic amines and the states of sleep. Science, 163, 32–41.PubMedCrossRefGoogle Scholar
  34. Kahneman, D. (1973).Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  35. Kahneman, D., & Beatty, J. (1967). Pupillary responses in a pitchdiscrimination task. Perception & Psychophysics, 2, 101–105.CrossRefGoogle Scholar
  36. Lacey, J. I. (1956). The evaluation of autonomic responses: Toward a general solution. Annals of the New York Academy of Sciences, 67, 125–163.PubMedCrossRefGoogle Scholar
  37. Landers, D. M. (1980). The arousal-performance relationship revisited. Research Quarterly for Exercise & Sport, 51, 77–90.Google Scholar
  38. Levitt, P., & Moore, R. Y. (1979). Origin and organization of brainstem catecholamine innervation in the rat. Journal of Comparative Neurology, 186, 505–528.PubMedCrossRefGoogle Scholar
  39. Loewenfeld, I. (1993). The pupil: Anatomy, physiology, and clinical applications. Detroit: Wayne State University Press.Google Scholar
  40. Loewy, A. D., Wallach, J. H., & McKellar, S. (1981). Efferent connections of the ventral medulla oblongata in the rat. Brain Research, 228, 63–80.PubMedGoogle Scholar
  41. McClure, S. M., Gilzenrat, M. S., & Cohen, J. D. (2005). An exploration-exploitation model based on norepinephrine and dopamine activity. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems 18 (pp. 867–874). Cambridge, MA: MIT Press.Google Scholar
  42. Morad, Y., Lemberg, H., Yofe, N., & Dagan, Y. (2000). Pupillography as an objective indicator of fatigue. Current Eye Research, 21, 535–542.PubMedGoogle Scholar
  43. Moxon, K. A., Devilbiss, D. M., Chapin, J. K., & Waterhouse, B. D. (2007). Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: A combined modeling and in vivo multichannel, multi-neuron recording study. Brain Research, 1147, 105–123.PubMedCrossRefGoogle Scholar
  44. Neiss, R. (1988). Reconceptualizing arousal: Psychological states in motor performance. Psychological Bulletin, 103, 345–366.PubMedCrossRefGoogle Scholar
  45. Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131, 510–532.PubMedCrossRefGoogle Scholar
  46. Nieuwenhuis, S., de Geus, E. J., & Aston-Jones, G. (in press). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology.Google Scholar
  47. Phillips, M. A., Szabadi, E., & Bradshaw, C. M. (2000). Comparison of the effects of clonidine and yohimbine on spontaneous pupillary fluctuations in healthy human volunteers. Psychopharmacology, 150, 85–89.PubMedCrossRefGoogle Scholar
  48. Poock, G. K. (1973). Information processing vs pupil diameter. Perceptual & Motor Skills, 37, 1000–1002.Google Scholar
  49. Pribram, K. H., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82, 116–149.PubMedCrossRefGoogle Scholar
  50. Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Society for Neuroscience Abstracts, 19, 974.Google Scholar
  51. Rajkowski, J., Lu, W., Zhu, Y., Cohen, J. D., & Aston-Jones, G. (2000). Prominent projections from the anterior cingulate cortex to the locus coeruleus (LC) in rhesus monkey. Society for Neuroscience Abstracts, 26, 2230.Google Scholar
  52. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86, 446–461.PubMedCrossRefGoogle Scholar
  53. Richer, F., & Beatty, J. (1987). Contrasting effects of response uncertainty on the task-evoked pupillary response and reaction time. Psychophysiology, 24, 258–262.PubMedCrossRefGoogle Scholar
  54. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.PubMedCrossRefGoogle Scholar
  55. Robbins, T. W. (1997). Arousal systems and attentional processes. Biological Psychology, 45, 57–71.PubMedCrossRefGoogle Scholar
  56. Servan-Schreiber, D., Printz, H., & Cohen, J. D. (1990). A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior. Science, 249, 892–895.PubMedCrossRefGoogle Scholar
  57. Shea-Brown, E., Gilzenrat, M., & Cohen, J. D. (2008). Optimization of decision making in multilayer networks: The role of locus coeruleus. Neural Computation, 20, 2863–2894.PubMedCrossRefGoogle Scholar
  58. Siegle, G. J. (1999). Cognitive and physiological aspects of attention to personally relevant negative information in depression. Unpublished doctoral dissertation, University of California, San Diego.Google Scholar
  59. Solanto, M. V. (1998). Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behavioural Brain Research, 94, 127–152.PubMedCrossRefGoogle Scholar
  60. Staal, M. A. (2004). Stress, cognition, and human performance: A literature review and conceptual framework (NASA Tech. Memorandum 212824). Moffett Field, CA: NASA Ames Research Center.Google Scholar
  61. Steinhauer, S. R., & Hakerem, G. (1992). The pupillary response in cognitive psychophysiology and schizophrenia. In D. Friedman & G. Bruder (Eds.), Psychophysiology and experimental psychopathology: A tribute to Samuel Sutton (Annals of the New York Academy of Sciences, Vol. 658, pp. 182–204). New York: New York Academy of Sciences.Google Scholar
  62. Steinhauer, S. R., & Zubin, J. (1982). Vulnerability to schizophrenia: Information processing in the pupil and event-related potential. In E. Usdin & I. Hanin (Eds.), Biological markers in psychiatry and neurology (pp. 371–385). Oxford: Pergamon.Google Scholar
  63. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.Google Scholar
  64. Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549–554.PubMedCrossRefGoogle Scholar
  65. Van Bockstaele, E. J., & Aston-Jones, G. (1995). Integration in the ventral medulla and coordination of sympathetic, pain and arousal functions. Clinical & Experimental Hypertension, 17, 153–165.CrossRefGoogle Scholar
  66. Van Bockstaele, E. J., Pieribone, V. A., & Aston-Jones, G. (1989). Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: Retrograde and anterograde tracing studies. Journal of Comparative Neurology, 290, 561–584.PubMedCrossRefGoogle Scholar
  67. Van Olst, E. H., Heemstra, M. L., & Ten Kortenaar, T. (1979). Stimulus significance and the orienting reaction. In H. D. Kimmel, E. H. Olst, & J. F. van Orlebeke (Eds.), The orienting reflex in humans (pp. 521–547). Hillsdale, NJ: Erlbaum.Google Scholar
  68. Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review, 7, 424–465.CrossRefGoogle Scholar
  69. Vincent, S. B. (1912). The function of the vibrissae in the behavior of the white rat. Behavioral Monographs, 1, 7–81.Google Scholar
  70. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology & Psychology, 18, 459–482.CrossRefGoogle Scholar
  71. Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46, 681–692.PubMedCrossRefGoogle Scholar
  72. Zajonc, R. B. (1980). Feeling and thinking: Preferences need no inferences. American Psychologist, 2, 151–175.CrossRefGoogle Scholar
  73. Zhu, Y., Iba, M., Rajkowski, J., & Aston-Jones, G. (2004). Projection from the orbitofrontal cortex to the locus coeruleus in monkeys revealed by anterograde tracing. Society for Neuroscience Abstracts, 30, 211–213.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Mark S. Gilzenrat
    • 1
  • Sander Nieuwenhuis
    • 2
  • Marieke Jepma
    • 2
  • Jonathan D. Cohen
    • 1
  1. 1.Princeton UniversityPrinceton
  2. 2.Cognitive Psychology Unit, Institute for Psychological ResearchLeiden UniversityLeidenThe Netherlands

Personalised recommendations