The role of taxonomies in the study of human memory

Abstract

The idea that memory is not unitary but is instead composed of multiple systems has a long history and has been debated with particular vigor in the last 20 years. Nevertheless, whether or not there are multiple memory systems remains unsettled. In this article, we suggest that psychologists wishing to classify memory can learn from biological systematics, the discipline that creates taxonomies of species. In so doing, we suggest that psychologists have made two assumptions in classifying memory: that features of memory are perfectly correlated, and that there is a straightforward mapping between taxonomy and theory. We argue that these assumptions are likely to be incorrect, but we also argue that there is a place for taxonomy in the study of memory. Taxonomies of memory are organizational schemes for data—they are descriptive, not explanatory-and so can inspire theory, although they cannot serve as theories themselves.

References

  1. Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85, 249–277.

    Article  Google Scholar 

  2. Baddeley, A. D. (1966). The capacity for generating information by randomization. Quarterly Journal of Experimental Psychology, 18, 119–129.

    PubMed  Article  Google Scholar 

  3. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–90). New York: Academic Press.

    Google Scholar 

  4. Baddeley, A. D., & Warrington, E. K. (1970). Amnesia and the distinction between long- and short-term memory. Journal of Verbal Learning & Verbal Behavior, 9, 176–189.

    Article  Google Scholar 

  5. Baum, D. A., & Larson, A. (1991). Adaptation reviewed: A phylogenetic methodology for studying character macroevolution. Systematic Zoology, 40, 1–18.

    Article  Google Scholar 

  6. Blaxton, T. A. (1989). Investigating dissociation among memory measures: Support for a transfer-appropriate processing framework. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 657–668.

    Article  Google Scholar 

  7. Blaxton, T. A. (1999). Combining disruption and activation techniques to map conceptual and perceptual memory processes in the human brain. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 104–129). Oxford: Oxford University Press.

    Google Scholar 

  8. Brady, R. H. (1985). On the independence of systematics. Cladistics, 1, 113–126.

    Article  Google Scholar 

  9. Broadbent, D. E. (1958). Perception and communication. Oxford: Oxford University Press.

    Google Scholar 

  10. Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21.

    Article  Google Scholar 

  11. Cermak, L. S., & Reale, L. (1978). Depth of processing and retention of words by alcoholic Korsakoff patients. Journal of Experimental Psychology: Human Learning & Memory, 4, 165–174.

    Article  Google Scholar 

  12. Challis, B. H., & Brodbeck, D. R. (1992). Level of processing affects priming in word fragment completion. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 595–607.

    Article  Google Scholar 

  13. Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2, 844–847.

    PubMed  Article  Google Scholar 

  14. Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press.

    Google Scholar 

  15. Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5, 131–178.

    PubMed  Article  Google Scholar 

  16. Cohen, N. J., & Squire, L. R. (1980). Preserved learning and patternanalyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210, 207–210.

    PubMed  Article  Google Scholar 

  17. Conrad, R., & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55, 429–432.

    PubMed  Google Scholar 

  18. Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal lobe excision. Neuropsychologia, 6, 255–265.

    Article  Google Scholar 

  19. Craik, F. I., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104, 268–294.

    Article  Google Scholar 

  20. Crisci, J. V., & Steussy, T. F. (1980). Determining primitive character states for phylogenetic reconstruction. Systematic Botany, 5, 112–135.

    Article  Google Scholar 

  21. de Pinna, M. C. (1991). Concepts and tests of homology and the cladistic paradigm. Cladistics, 7, 367–394.

    Article  Google Scholar 

  22. Dienes, Z., & Berry, D. (1997). Implicit learning: Below the subjective threshold. Psychonomic Bulletin & Review, 4, 3–23.

    Article  Google Scholar 

  23. Dunn, J. C., & Kirsner, K. (1988). Discovering functionally independent mental processes: The principle of reversed association. Psychological Review, 95, 91–101.

    PubMed  Article  Google Scholar 

  24. Estabrook, G. F. (1972). Cladistic methodology: A discussion of the theoretical basis for the induction of evolutionary history. Annual Review of Ecology & Systematics, 3, 427–456.

    Article  Google Scholar 

  25. Fleishman, E. A., & Quaintance, M. K. (1984). Taxonomics of human performance. Orlando, FL: Academic Press.

    Google Scholar 

  26. Foster, J. K., & Jelicic, M. (1999). Memory: Systems, process, or function? Oxford: Oxford University Press.

    Google Scholar 

  27. Gabrieli, J. D. E. (1998). Cognitive neuroscience of human memory. Annual Review of Psychology, 49, 87–115.

    PubMed  Article  Google Scholar 

  28. Gabrieli, J. D. E. (1999). The architecture of human memory. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 205–231). Oxford: Oxford University Press.

    Google Scholar 

  29. Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, & Cognition, 11, 501–518.

    Article  Google Scholar 

  30. Graf, P., Squire, L. R., & Mandler, G. (1984). The information that amnesic patients do not forget. Journal of Experimental Psychology: Learning, Memory, & Cognition, 10, 164–178.

    Article  Google Scholar 

  31. Green, R. E. A., & Shanks, D. R. (1993). On the existence of independent explicit and implicit learning systems: An examination of some evidence. Memory & Cognition, 21, 304–317.

    Article  Google Scholar 

  32. Hayes, B. K., & Hennessy, R. (1996). The nature and development of nonverbal implicit memory. Journal of Experimental Child Psychology, 63, 22–43.

    PubMed  Article  Google Scholar 

  33. Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. Journal of Neuroscience, 9, 582–587.

    PubMed  Google Scholar 

  34. Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.

    Google Scholar 

  35. Hintzman, D. L. (1990). Human learning and memory: Connections and dissociations. Annual Review of Psychology, 41, 109–140.

    PubMed  Article  Google Scholar 

  36. Hirst, W. (1982). The amnesic syndrome: Descriptions and explanations. Psychological Bulletin, 91, 435–460.

    PubMed  Article  Google Scholar 

  37. Howe, M. L., Rabinowitz, F. M., & Grant, M. J. (1993). On measuring (in)dependence of cognitive processes. Psychological Review, 100, 737–747.

    PubMed  Article  Google Scholar 

  38. Huppert, F. A., & Piercy, M. (1982). In search of the functional locus of amnesic syndromes. In L. S. Cermak (Ed.), Human memory and amnesia (pp. 123–137). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  39. Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110, 306–340.

    Article  Google Scholar 

  40. James, W. (1890). Principles of Psychology. New York: Holt.

    Google Scholar 

  41. Johnson, L.A.S. (1970). Rainbow’s end: The quest for an optimal taxonomy. Systematic Zoology, 19, 203–239.

    PubMed  Article  Google Scholar 

  42. Keane, M. M., Gabrieli, J. D. E., Fenneman, A. C., Growdon, J. H., & Corkin, S. (1991). Evidence for a dissociation between perceptual and conceptual priming in Alzheimer’s disease. Behavioral Neuroscience, 105, 326–342.

    PubMed  Article  Google Scholar 

  43. Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in shortterm retention of single items. Journal of Verbal Learning & Verbal Behavior, 1, 153–161.

    Article  Google Scholar 

  44. Knopman, D. (1991). Unaware learning versus preserved learning in pharmacologic amnesia: Similarities and differences. Journal of Experimental Psychology: Learning, Memory, & Cognition, 17, 1017–1029.

    Article  Google Scholar 

  45. Kolers, P. A., & Roediger, H. L., III (1984). Procedures of mind. Journal of Verbal Learning & Verbal Behavior, 23, 425–449.

    Article  Google Scholar 

  46. Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  47. Kosslyn, S. M., Ball, T. M., & Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception & Performance, 4, 47–60.

    Article  Google Scholar 

  48. Kosslyn, S. M., & Van Kleeck, M. (1990). Broken brains and normal minds: Why humpty-dumpty needs a skeleton. In E. Schwartz (Ed.), Computational neuroscience (pp. 390–402). Cambridge, MA: MIT Press.

    Google Scholar 

  49. Maslin, T. P. (1952). Morphological criteria of phyletic relationships. Systematic Zoology, 1, 49–70.

    Article  Google Scholar 

  50. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  51. Mayr, E. (1969). Principles of systematic zoology. New York: McGraw-Hill.

    Google Scholar 

  52. McKoon, G., & Ratcliff, R. (1995). How should implicit memory phenomena be modeled? Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 777–784.

    Article  Google Scholar 

  53. Melton, A. W. (1963). Implications of short-term memory for a general theory of memory. Journal of Verbal Learning & Verbal Behavior, 2, 1–21.

    Article  Google Scholar 

  54. Metcalfe, J., Cottrell, G. W., & Mencl, W. E. (1992). Cognitive binding: A computational-modeling analysis of a distinction between implicit and explicit memory. Journal of Cognitive Neuroscience, 4, 289–298.

    Article  Google Scholar 

  55. Moscovitch, M. (1994). Memory and working with memory: Evaluation of a component process model and comparisons of other models. In D. L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 269–310). Cambridge, MA: MIT Press.

    Google Scholar 

  56. Moscovitch, M., & Umiltà, C. (1991). Conscious and nonconscious aspects of memory: A neuropsychological framework of modules and central systems. In. R. G. Lister & H. J. Weingartner (Eds.), Perspectives in cognitive neuroscience (pp. 229–266). Oxford: Oxford University Press.

    Google Scholar 

  57. Nadel, L. (1994). Multiple memory systems: What and why, an update. In D. L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 39–63). Cambridge, MA: MIT Press.

    Google Scholar 

  58. Naito, M. (1990). Repetition priming in children and adults: Age-related dissociation between implicit and explicit memory. Journal of Experimental Child Psychology, 50, 462–484.

    Article  Google Scholar 

  59. Neely, J. H. (1989). Experimental dissociations and the episodic/semantic memory distinction. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 229–270). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  60. Nissen, M. J., Willingham, D. B., & Hartman, M. (1989). Explicit and implicit remembering: When is learning preserved in amnesia? Neuropsychologia, 27, 341–352.

    PubMed  Article  Google Scholar 

  61. Nyberg, L., & Tulving, E. (1996). Classifying human long-term memory: Evidence from converging dissociations. European Journal of Cognitive Psychology, 8, 163–183.

    Article  Google Scholar 

  62. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press, Clarendon Press.

    Google Scholar 

  63. Olton, D. S. (1989). Inferring psychological dissociations from experimental dissociations: The temporal context of episodic memory. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 161–176). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  64. Ostergaard, A. L. (1999). Priming deficits in amnesia: Now you see them, now you don’t. Journal of the International Neuropsychological Society, 5, 175–190.

    PubMed  Article  Google Scholar 

  65. Ostergaard, A. L., & Jernigan, T. L. (1993). Are word priming and explicit memory mediated by different brain structures? In P. Graf & M. Masson (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 327–349). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  66. Perruchet, P., & Amorim, M.-A. (1992). Conscious knowledge and changes in performance in sequence learning: Evidence against dissociation. Journal of Experimental Psychology: Learning, Memory, & Cognition. 18, 785–800.

    Article  Google Scholar 

  67. Perruchet, P., Bigand, E., & Benoit-Gonin, F. (1997). The emergence of explicit knowledge during the early phase of learning in sequential reaction time tasks. Psychological Research, 60, 4–13.

    Article  Google Scholar 

  68. Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual items. Journal of Experimental Psychology, 58, 193–198.

    PubMed  Article  Google Scholar 

  69. Platnick, N. I. (1980). Philosophy and the transformation of cladistics. Systematic Zoology, 28, 537–546.

    Article  Google Scholar 

  70. Poldrack, R. A. (1996). On testing for stochastic dissociations. Psychonomic Bulletin & Review, 3, 434–448.

    Google Scholar 

  71. Price, C. J., Mummery, C. J., Moore, C. J., Frackowiak, R. S. J., & Friston, K. J. (1999). Delineating necessary and sufficient neural systems with functional imaging studies of neuropsychological patients. Journal of Cognitive Neuroscience, 11, 371–382.

    PubMed  Article  Google Scholar 

  72. Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80, 1–24.

    Article  Google Scholar 

  73. Pylyshyn, Z. W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88, 16–45.

    Article  Google Scholar 

  74. Ratcliff, R., & McKoon, G. (1995). Bias in the priming of object decisions. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 754–767.

    Article  Google Scholar 

  75. Ratcliff, R., & McKoon, G. (1996). Bias effects in implicit memory tasks. Journal of Experimental Psychology: General, 125, 403–421.

    Article  Google Scholar 

  76. Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1, 217–229.

    Google Scholar 

  77. Ridley, M. (1986). Evolution and classification. London: Longman.

    Google Scholar 

  78. Robbins, T. W. (1996). Refining the taxonomy of memory. Science, 273, 1353–1354.

    PubMed  Article  Google Scholar 

  79. Roediger, H. L., III (1990). Implicit memory: A commentary. Bulletin of the Psychonomic Society, 28, 373–380.

    Google Scholar 

  80. Roediger, H. L., III, Buckner, R., & McDermott, K. B. (1999). Components of processing. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 31–65). Oxford: Oxford University Press.

    Google Scholar 

  81. Roediger, H. L., III, Rajaram, S., & Srinivas, K. (1990). Specifying criteria for postulating memory systems. In A. Diamond (Ed.), The development and neural bases of higher cognitive function (Annals of the New York Academy of Sciences, Vol. 608, pp. 572–595). New York: New York Academy of Sciences.

    Google Scholar 

  82. Russo, R., Nichelli, P., Gibertoni, M., & Cornia, C. (1995). Developmental trends in implicit and explicit memory: A picture completion study. Journal of Experimental Child Psychology, 59, 566–578.

    Article  Google Scholar 

  83. Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, & Cognition, 13, 501–518.

    Article  Google Scholar 

  84. Schacter, D. L. (1992). Understanding implicit memory: A cognitive neuroscience approach. American Psychologist, 47, 559–569.

    PubMed  Article  Google Scholar 

  85. Schacter, D. L., & Cooper, L. A. (1995). Bias in the priming of object decisions: Logic, assumption, and data. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 768–776.

    Article  Google Scholar 

  86. Schacter, D. L., & Tulving, E. (1994a). Memory systems 1994. Cambridge, MA: MIT Press.

    Google Scholar 

  87. Schacter, D. L., & Tulving, E. (1994b). What are the memory systems of 1994? In D. L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 1–38). Cambridge, MA: MIT Press.

    Google Scholar 

  88. Schacter, D. L., Wagner, A. D., & Buckner, R. L. (2000). Memory systems of 1999. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 627–643). Oxford: Oxford University Press.

    Google Scholar 

  89. Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22, 261–273.

    PubMed  Article  Google Scholar 

  90. Shanks, D. R., & Johnstone, T. (1999). Evaluating the relationship between explicit and implicit knowledge in a sequential reaction time task. Journal of Experimental Psychology: Learning, Memory, & Cognition, 25, 1435–1451.

    Article  Google Scholar 

  91. Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable learning systems. Behavioral & Brain Sciences, 17, 367–447.

    Article  Google Scholar 

  92. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.

    PubMed  Article  Google Scholar 

  93. Sherry, D. F., & Schacter, D. L. (1987).The evolution of multiple memory systems. Psychological Review, 94, 439–454.

    Article  Google Scholar 

  94. Shimamura, A. P. (1985). Problems with the finding of stochastic independence as evidence for multiple memory systems. Bulletin of the Psychonomic Society, 23, 506–508.

    Google Scholar 

  95. Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University Press.

    Google Scholar 

  96. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman.

    Google Scholar 

  97. Sokal, R. R., & Sneath, P. H. A. (1963). The principles of numerical taxonomy. San Francisco: W. H. Freeman.

    Google Scholar 

  98. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.

    PubMed  Article  Google Scholar 

  99. Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.

    PubMed  Article  Google Scholar 

  100. Stadler, M. A. (1997). Distinguishing implicit and explicit learning. Psychonomic Bulletin & Review, 4, 56–62.

    Article  Google Scholar 

  101. Stern, L. D. (1981). A review of theories of human amnesia. Memory & Cognition, 9, 247–262.

    Article  Google Scholar 

  102. Stevens, P. F. (1980). Evolutionary polarity of character states. Annual Review of Ecology & Systematics, 11, 333–358.

    Article  Google Scholar 

  103. Toth, J. P., & Hunt, R. R. (1999). Not one versus many, but zero versus any: Structure and function in the context of the multiple-memory systems debate. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 232–272). Oxford: Oxford University Press.

    Google Scholar 

  104. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization and memory (pp. 382–403). New York: Academic Press.

    Google Scholar 

  105. Tulving, E. (1983). Elements of episodic memory. Oxford: Oxford University Press.

    Google Scholar 

  106. Tulving, E. (1984). How many memory systems are there? American Psychologist, 40, 385–398.

    Article  Google Scholar 

  107. Tulving, E. (1985). On the classif ication problem in learning and memory. In L.-G. Nilsson & T. Archer (Eds.), Perspectives on learning and memory (pp. 67–94). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  108. Tulving, E. (1986). What kind of a hypothesis is the distinction between episodic and semantic memory? Journal of Experimental Psychology: Learning, Memory, & Cognition, 12, 307–311.

    Article  Google Scholar 

  109. Tulving, E. (1999). Study of memory: Processes and systems. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 11–30). Oxford: Oxford University Press.

    Google Scholar 

  110. Tulving, E. (2000). Concepts of memory. In E. Tulving & F. I.M. Craik (Eds.), The Oxford handbook of memory (pp. 33–43). Oxford: Oxford University Press.

    Google Scholar 

  111. Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.

    PubMed  Article  Google Scholar 

  112. Tulving, E., Schacter, D. L., & Stark, H. A. (1982). Priming effects in word-fragment completion are independent of recognition memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8, 336–342.

    Article  Google Scholar 

  113. Warrington, E. K., & Weiskrantz, L. (1970). Amnesia: Consolidation or retrieval? Nature, 228, 628–630.

    PubMed  Article  Google Scholar 

  114. Weldon, M. S. (1999). The memory chop shop: Issues in the search for memory systems. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 162–204). Oxford: Oxford University Press.

    Google Scholar 

  115. Wickelgren, W. A. (1973). The long and short of memory. Psychological Bulletin, 80, 425–438.

    Article  Google Scholar 

  116. Wiley, E. O., Siegel-Causey, D., Brooks, D. R., & Funk, V. A. (1991). The compleat cladist: A primer of phylogenetic procedures (Spec. Pub. No. 19). Lawrence: University of Kansas Museum of Natural History.

    Google Scholar 

  117. Willingham, D. B. (1997). Implicit and explicit memory do not differ in flexibility: Comment on Dienes and Berry (1997). Psychonomic Bulletin & Review, 4, 587–591.

    Google Scholar 

  118. Willingham, D. B. (1998). What differentiates declarative and procedural memory: Reply to Cohen, Poldrack, and Eichenbaum (1997). Memory, 6, 689–699

    PubMed  Article  Google Scholar 

  119. Winocur, G. (1982). The amnesic syndrome: A deficit of cue utilization. In L. S. Cermak (Ed.), Human memory and amnesia (pp. 139–166). Hillsdale, NJ: Erlbaum.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Willingham.

Additional information

This work was supported by NIH Grant RO1 NS40106-01 and NSF Grant BRS9905342.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Willingham, D.B., Goedert, K. The role of taxonomies in the study of human memory. Cognitive, Affective, & Behavioral Neuroscience 1, 250–265 (2001). https://doi.org/10.3758/CABN.1.3.250

Download citation

Keywords

  • Free Recall
  • Memory System
  • Medial Temporal Lobe
  • Implicit Memory
  • Explicit Memory