Cognitive, Affective, & Behavioral Neuroscience

, Volume 1, Issue 3, pp 250–265 | Cite as

The role of taxonomies in the study of human memory

Article

Abstract

The idea that memory is not unitary but is instead composed of multiple systems has a long history and has been debated with particular vigor in the last 20 years. Nevertheless, whether or not there are multiple memory systems remains unsettled. In this article, we suggest that psychologists wishing to classify memory can learn from biological systematics, the discipline that creates taxonomies of species. In so doing, we suggest that psychologists have made two assumptions in classifying memory: that features of memory are perfectly correlated, and that there is a straightforward mapping between taxonomy and theory. We argue that these assumptions are likely to be incorrect, but we also argue that there is a place for taxonomy in the study of memory. Taxonomies of memory are organizational schemes for data—they are descriptive, not explanatory-and so can inspire theory, although they cannot serve as theories themselves.

References

  1. Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85, 249–277.CrossRefGoogle Scholar
  2. Baddeley, A. D. (1966). The capacity for generating information by randomization. Quarterly Journal of Experimental Psychology, 18, 119–129.PubMedCrossRefGoogle Scholar
  3. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–90). New York: Academic Press.Google Scholar
  4. Baddeley, A. D., & Warrington, E. K. (1970). Amnesia and the distinction between long- and short-term memory. Journal of Verbal Learning & Verbal Behavior, 9, 176–189.CrossRefGoogle Scholar
  5. Baum, D. A., & Larson, A. (1991). Adaptation reviewed: A phylogenetic methodology for studying character macroevolution. Systematic Zoology, 40, 1–18.CrossRefGoogle Scholar
  6. Blaxton, T. A. (1989). Investigating dissociation among memory measures: Support for a transfer-appropriate processing framework. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 657–668.CrossRefGoogle Scholar
  7. Blaxton, T. A. (1999). Combining disruption and activation techniques to map conceptual and perceptual memory processes in the human brain. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 104–129). Oxford: Oxford University Press.Google Scholar
  8. Brady, R. H. (1985). On the independence of systematics. Cladistics, 1, 113–126.CrossRefGoogle Scholar
  9. Broadbent, D. E. (1958). Perception and communication. Oxford: Oxford University Press.CrossRefGoogle Scholar
  10. Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21.CrossRefGoogle Scholar
  11. Cermak, L. S., & Reale, L. (1978). Depth of processing and retention of words by alcoholic Korsakoff patients. Journal of Experimental Psychology: Human Learning & Memory, 4, 165–174.CrossRefGoogle Scholar
  12. Challis, B. H., & Brodbeck, D. R. (1992). Level of processing affects priming in word fragment completion. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 595–607.CrossRefGoogle Scholar
  13. Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2, 844–847.PubMedCrossRefGoogle Scholar
  14. Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press.Google Scholar
  15. Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5, 131–178.PubMedCrossRefGoogle Scholar
  16. Cohen, N. J., & Squire, L. R. (1980). Preserved learning and patternanalyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210, 207–210.PubMedCrossRefGoogle Scholar
  17. Conrad, R., & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55, 429–432.PubMedGoogle Scholar
  18. Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal lobe excision. Neuropsychologia, 6, 255–265.CrossRefGoogle Scholar
  19. Craik, F. I., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104, 268–294.CrossRefGoogle Scholar
  20. Crisci, J. V., & Steussy, T. F. (1980). Determining primitive character states for phylogenetic reconstruction. Systematic Botany, 5, 112–135.CrossRefGoogle Scholar
  21. de Pinna, M. C. (1991). Concepts and tests of homology and the cladistic paradigm. Cladistics, 7, 367–394.CrossRefGoogle Scholar
  22. Dienes, Z., & Berry, D. (1997). Implicit learning: Below the subjective threshold. Psychonomic Bulletin & Review, 4, 3–23.CrossRefGoogle Scholar
  23. Dunn, J. C., & Kirsner, K. (1988). Discovering functionally independent mental processes: The principle of reversed association. Psychological Review, 95, 91–101.PubMedCrossRefGoogle Scholar
  24. Estabrook, G. F. (1972). Cladistic methodology: A discussion of the theoretical basis for the induction of evolutionary history. Annual Review of Ecology & Systematics, 3, 427–456.CrossRefGoogle Scholar
  25. Fleishman, E. A., & Quaintance, M. K. (1984). Taxonomics of human performance. Orlando, FL: Academic Press.Google Scholar
  26. Foster, J. K., & Jelicic, M. (1999). Memory: Systems, process, or function? Oxford: Oxford University Press.Google Scholar
  27. Gabrieli, J. D. E. (1998). Cognitive neuroscience of human memory. Annual Review of Psychology, 49, 87–115.PubMedCrossRefGoogle Scholar
  28. Gabrieli, J. D. E. (1999). The architecture of human memory. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 205–231). Oxford: Oxford University Press.Google Scholar
  29. Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, & Cognition, 11, 501–518.CrossRefGoogle Scholar
  30. Graf, P., Squire, L. R., & Mandler, G. (1984). The information that amnesic patients do not forget. Journal of Experimental Psychology: Learning, Memory, & Cognition, 10, 164–178.CrossRefGoogle Scholar
  31. Green, R. E. A., & Shanks, D. R. (1993). On the existence of independent explicit and implicit learning systems: An examination of some evidence. Memory & Cognition, 21, 304–317.CrossRefGoogle Scholar
  32. Hayes, B. K., & Hennessy, R. (1996). The nature and development of nonverbal implicit memory. Journal of Experimental Child Psychology, 63, 22–43.PubMedCrossRefGoogle Scholar
  33. Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. Journal of Neuroscience, 9, 582–587.PubMedGoogle Scholar
  34. Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.Google Scholar
  35. Hintzman, D. L. (1990). Human learning and memory: Connections and dissociations. Annual Review of Psychology, 41, 109–140.PubMedCrossRefGoogle Scholar
  36. Hirst, W. (1982). The amnesic syndrome: Descriptions and explanations. Psychological Bulletin, 91, 435–460.PubMedCrossRefGoogle Scholar
  37. Howe, M. L., Rabinowitz, F. M., & Grant, M. J. (1993). On measuring (in)dependence of cognitive processes. Psychological Review, 100, 737–747.PubMedCrossRefGoogle Scholar
  38. Huppert, F. A., & Piercy, M. (1982). In search of the functional locus of amnesic syndromes. In L. S. Cermak (Ed.), Human memory and amnesia (pp. 123–137). Hillsdale, NJ: Erlbaum.Google Scholar
  39. Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110, 306–340.CrossRefGoogle Scholar
  40. James, W. (1890). Principles of Psychology. New York: Holt.CrossRefGoogle Scholar
  41. Johnson, L.A.S. (1970). Rainbow’s end: The quest for an optimal taxonomy. Systematic Zoology, 19, 203–239.PubMedCrossRefGoogle Scholar
  42. Keane, M. M., Gabrieli, J. D. E., Fenneman, A. C., Growdon, J. H., & Corkin, S. (1991). Evidence for a dissociation between perceptual and conceptual priming in Alzheimer’s disease. Behavioral Neuroscience, 105, 326–342.PubMedCrossRefGoogle Scholar
  43. Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in shortterm retention of single items. Journal of Verbal Learning & Verbal Behavior, 1, 153–161.CrossRefGoogle Scholar
  44. Knopman, D. (1991). Unaware learning versus preserved learning in pharmacologic amnesia: Similarities and differences. Journal of Experimental Psychology: Learning, Memory, & Cognition, 17, 1017–1029.CrossRefGoogle Scholar
  45. Kolers, P. A., & Roediger, H. L., III (1984). Procedures of mind. Journal of Verbal Learning & Verbal Behavior, 23, 425–449.CrossRefGoogle Scholar
  46. Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press.Google Scholar
  47. Kosslyn, S. M., Ball, T. M., & Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception & Performance, 4, 47–60.CrossRefGoogle Scholar
  48. Kosslyn, S. M., & Van Kleeck, M. (1990). Broken brains and normal minds: Why humpty-dumpty needs a skeleton. In E. Schwartz (Ed.), Computational neuroscience (pp. 390–402). Cambridge, MA: MIT Press.Google Scholar
  49. Maslin, T. P. (1952). Morphological criteria of phyletic relationships. Systematic Zoology, 1, 49–70.CrossRefGoogle Scholar
  50. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.Google Scholar
  51. Mayr, E. (1969). Principles of systematic zoology. New York: McGraw-Hill.Google Scholar
  52. McKoon, G., & Ratcliff, R. (1995). How should implicit memory phenomena be modeled? Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 777–784.CrossRefGoogle Scholar
  53. Melton, A. W. (1963). Implications of short-term memory for a general theory of memory. Journal of Verbal Learning & Verbal Behavior, 2, 1–21.CrossRefGoogle Scholar
  54. Metcalfe, J., Cottrell, G. W., & Mencl, W. E. (1992). Cognitive binding: A computational-modeling analysis of a distinction between implicit and explicit memory. Journal of Cognitive Neuroscience, 4, 289–298.CrossRefGoogle Scholar
  55. Moscovitch, M. (1994). Memory and working with memory: Evaluation of a component process model and comparisons of other models. In D. L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 269–310). Cambridge, MA: MIT Press.Google Scholar
  56. Moscovitch, M., & Umiltà, C. (1991). Conscious and nonconscious aspects of memory: A neuropsychological framework of modules and central systems. In. R. G. Lister & H. J. Weingartner (Eds.), Perspectives in cognitive neuroscience (pp. 229–266). Oxford: Oxford University Press.Google Scholar
  57. Nadel, L. (1994). Multiple memory systems: What and why, an update. In D. L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 39–63). Cambridge, MA: MIT Press.Google Scholar
  58. Naito, M. (1990). Repetition priming in children and adults: Age-related dissociation between implicit and explicit memory. Journal of Experimental Child Psychology, 50, 462–484.CrossRefGoogle Scholar
  59. Neely, J. H. (1989). Experimental dissociations and the episodic/semantic memory distinction. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 229–270). Hillsdale, NJ: Erlbaum.Google Scholar
  60. Nissen, M. J., Willingham, D. B., & Hartman, M. (1989). Explicit and implicit remembering: When is learning preserved in amnesia? Neuropsychologia, 27, 341–352.PubMedCrossRefGoogle Scholar
  61. Nyberg, L., & Tulving, E. (1996). Classifying human long-term memory: Evidence from converging dissociations. European Journal of Cognitive Psychology, 8, 163–183.CrossRefGoogle Scholar
  62. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press, Clarendon Press.Google Scholar
  63. Olton, D. S. (1989). Inferring psychological dissociations from experimental dissociations: The temporal context of episodic memory. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 161–176). Hillsdale, NJ: Erlbaum.Google Scholar
  64. Ostergaard, A. L. (1999). Priming deficits in amnesia: Now you see them, now you don’t. Journal of the International Neuropsychological Society, 5, 175–190.PubMedCrossRefGoogle Scholar
  65. Ostergaard, A. L., & Jernigan, T. L. (1993). Are word priming and explicit memory mediated by different brain structures? In P. Graf & M. Masson (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 327–349). Hillsdale, NJ: Erlbaum.Google Scholar
  66. Perruchet, P., & Amorim, M.-A. (1992). Conscious knowledge and changes in performance in sequence learning: Evidence against dissociation. Journal of Experimental Psychology: Learning, Memory, & Cognition. 18, 785–800.CrossRefGoogle Scholar
  67. Perruchet, P., Bigand, E., & Benoit-Gonin, F. (1997). The emergence of explicit knowledge during the early phase of learning in sequential reaction time tasks. Psychological Research, 60, 4–13.CrossRefGoogle Scholar
  68. Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual items. Journal of Experimental Psychology, 58, 193–198.PubMedCrossRefGoogle Scholar
  69. Platnick, N. I. (1980). Philosophy and the transformation of cladistics. Systematic Zoology, 28, 537–546.CrossRefGoogle Scholar
  70. Poldrack, R. A. (1996). On testing for stochastic dissociations. Psychonomic Bulletin & Review, 3, 434–448.Google Scholar
  71. Price, C. J., Mummery, C. J., Moore, C. J., Frackowiak, R. S. J., & Friston, K. J. (1999). Delineating necessary and sufficient neural systems with functional imaging studies of neuropsychological patients. Journal of Cognitive Neuroscience, 11, 371–382.PubMedCrossRefGoogle Scholar
  72. Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80, 1–24.CrossRefGoogle Scholar
  73. Pylyshyn, Z. W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychological Review, 88, 16–45.CrossRefGoogle Scholar
  74. Ratcliff, R., & McKoon, G. (1995). Bias in the priming of object decisions. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 754–767.CrossRefGoogle Scholar
  75. Ratcliff, R., & McKoon, G. (1996). Bias effects in implicit memory tasks. Journal of Experimental Psychology: General, 125, 403–421.CrossRefGoogle Scholar
  76. Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1, 217–229.Google Scholar
  77. Ridley, M. (1986). Evolution and classification. London: Longman.Google Scholar
  78. Robbins, T. W. (1996). Refining the taxonomy of memory. Science, 273, 1353–1354.PubMedCrossRefGoogle Scholar
  79. Roediger, H. L., III (1990). Implicit memory: A commentary. Bulletin of the Psychonomic Society, 28, 373–380.Google Scholar
  80. Roediger, H. L., III, Buckner, R., & McDermott, K. B. (1999). Components of processing. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 31–65). Oxford: Oxford University Press.Google Scholar
  81. Roediger, H. L., III, Rajaram, S., & Srinivas, K. (1990). Specifying criteria for postulating memory systems. In A. Diamond (Ed.), The development and neural bases of higher cognitive function (Annals of the New York Academy of Sciences, Vol. 608, pp. 572–595). New York: New York Academy of Sciences.Google Scholar
  82. Russo, R., Nichelli, P., Gibertoni, M., & Cornia, C. (1995). Developmental trends in implicit and explicit memory: A picture completion study. Journal of Experimental Child Psychology, 59, 566–578.CrossRefGoogle Scholar
  83. Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, & Cognition, 13, 501–518.CrossRefGoogle Scholar
  84. Schacter, D. L. (1992). Understanding implicit memory: A cognitive neuroscience approach. American Psychologist, 47, 559–569.PubMedCrossRefGoogle Scholar
  85. Schacter, D. L., & Cooper, L. A. (1995). Bias in the priming of object decisions: Logic, assumption, and data. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 768–776.CrossRefGoogle Scholar
  86. Schacter, D. L., & Tulving, E. (1994a). Memory systems 1994. Cambridge, MA: MIT Press.Google Scholar
  87. Schacter, D. L., & Tulving, E. (1994b). What are the memory systems of 1994? In D. L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 1–38). Cambridge, MA: MIT Press.Google Scholar
  88. Schacter, D. L., Wagner, A. D., & Buckner, R. L. (2000). Memory systems of 1999. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 627–643). Oxford: Oxford University Press.Google Scholar
  89. Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22, 261–273.PubMedCrossRefGoogle Scholar
  90. Shanks, D. R., & Johnstone, T. (1999). Evaluating the relationship between explicit and implicit knowledge in a sequential reaction time task. Journal of Experimental Psychology: Learning, Memory, & Cognition, 25, 1435–1451.CrossRefGoogle Scholar
  91. Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable learning systems. Behavioral & Brain Sciences, 17, 367–447.CrossRefGoogle Scholar
  92. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.PubMedCrossRefGoogle Scholar
  93. Sherry, D. F., & Schacter, D. L. (1987).The evolution of multiple memory systems. Psychological Review, 94, 439–454.CrossRefGoogle Scholar
  94. Shimamura, A. P. (1985). Problems with the finding of stochastic independence as evidence for multiple memory systems. Bulletin of the Psychonomic Society, 23, 506–508.Google Scholar
  95. Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University Press.Google Scholar
  96. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman.Google Scholar
  97. Sokal, R. R., & Sneath, P. H. A. (1963). The principles of numerical taxonomy. San Francisco: W. H. Freeman.Google Scholar
  98. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.PubMedCrossRefGoogle Scholar
  99. Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.PubMedCrossRefGoogle Scholar
  100. Stadler, M. A. (1997). Distinguishing implicit and explicit learning. Psychonomic Bulletin & Review, 4, 56–62.CrossRefGoogle Scholar
  101. Stern, L. D. (1981). A review of theories of human amnesia. Memory & Cognition, 9, 247–262.CrossRefGoogle Scholar
  102. Stevens, P. F. (1980). Evolutionary polarity of character states. Annual Review of Ecology & Systematics, 11, 333–358.CrossRefGoogle Scholar
  103. Toth, J. P., & Hunt, R. R. (1999). Not one versus many, but zero versus any: Structure and function in the context of the multiple-memory systems debate. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 232–272). Oxford: Oxford University Press.Google Scholar
  104. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization and memory (pp. 382–403). New York: Academic Press.Google Scholar
  105. Tulving, E. (1983). Elements of episodic memory. Oxford: Oxford University Press.Google Scholar
  106. Tulving, E. (1984). How many memory systems are there? American Psychologist, 40, 385–398.CrossRefGoogle Scholar
  107. Tulving, E. (1985). On the classif ication problem in learning and memory. In L.-G. Nilsson & T. Archer (Eds.), Perspectives on learning and memory (pp. 67–94). Hillsdale, NJ: Erlbaum.Google Scholar
  108. Tulving, E. (1986). What kind of a hypothesis is the distinction between episodic and semantic memory? Journal of Experimental Psychology: Learning, Memory, & Cognition, 12, 307–311.CrossRefGoogle Scholar
  109. Tulving, E. (1999). Study of memory: Processes and systems. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 11–30). Oxford: Oxford University Press.Google Scholar
  110. Tulving, E. (2000). Concepts of memory. In E. Tulving & F. I.M. Craik (Eds.), The Oxford handbook of memory (pp. 33–43). Oxford: Oxford University Press.Google Scholar
  111. Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.PubMedCrossRefGoogle Scholar
  112. Tulving, E., Schacter, D. L., & Stark, H. A. (1982). Priming effects in word-fragment completion are independent of recognition memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8, 336–342.CrossRefGoogle Scholar
  113. Warrington, E. K., & Weiskrantz, L. (1970). Amnesia: Consolidation or retrieval? Nature, 228, 628–630.PubMedCrossRefGoogle Scholar
  114. Weldon, M. S. (1999). The memory chop shop: Issues in the search for memory systems. In J. K. Foster & M. Jelicic (Eds.), Memory: Structure, function, or process? (pp. 162–204). Oxford: Oxford University Press.Google Scholar
  115. Wickelgren, W. A. (1973). The long and short of memory. Psychological Bulletin, 80, 425–438.CrossRefGoogle Scholar
  116. Wiley, E. O., Siegel-Causey, D., Brooks, D. R., & Funk, V. A. (1991). The compleat cladist: A primer of phylogenetic procedures (Spec. Pub. No. 19). Lawrence: University of Kansas Museum of Natural History.Google Scholar
  117. Willingham, D. B. (1997). Implicit and explicit memory do not differ in flexibility: Comment on Dienes and Berry (1997). Psychonomic Bulletin & Review, 4, 587–591.Google Scholar
  118. Willingham, D. B. (1998). What differentiates declarative and procedural memory: Reply to Cohen, Poldrack, and Eichenbaum (1997). Memory, 6, 689–699PubMedCrossRefGoogle Scholar
  119. Winocur, G. (1982). The amnesic syndrome: A deficit of cue utilization. In L. S. Cermak (Ed.), Human memory and amnesia (pp. 139–166). Hillsdale, NJ: Erlbaum.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2001

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of VirginiaCharlottesville

Personalised recommendations