Abstract
Cortical representations of sound can be modified by repeatedly pairing presentation of a pure tone with electrical stimulation of neuromodulatory neurons located in the basal forebrain (Bakin & Weinberger, 1996; Kilgard & Merzenich, 1998a). We developed a computational model to investigate the possible effects of basal forebrain modulation on map reorganization in the auditory cortex. The model is a self-organizing map with acoustic response characteristics mimicking those observed in the mammalian auditory cortex. We simulated the effects of basal forebrain modulation, using parameters intrinsic to the self-organizing map, such as the learning rate (controlling the adaptability of map nodes) and the neighborhood function (controlling the excitability of map nodes). Previous research has suggested that both parameters can be useful for characterizing the effects of neuromodulation on plasticity (Kohonen, 1993; Myers et al., 1996; Myers, Ermita, Hasselmo, & Gluck, 1998). The model successfully accounts for experimentally observed effects of pairing basal forebrain stimulation with the presentation of a single tone, but not of two tones, suggesting that auditory cortical plasticity is constrained in ways not accounted for by current theories. Despite this limitation, the model provides a useful framework for describing experience-induced changes in auditory representations and for relating such changes to variations in the excitability and adaptability of cortical neurons produced by neuromodulation.
Article PDF
References
Abbott, L., & Sejnowski, T. (Eds.) (1999). Neural codes and distributed representations: Foundations of neural computation. Cambridge, MA: MIT Press.
Ahissar, E., Abeles, M., Ahissar, M., Haidarliu, S., & Vaadia, E. (1998). Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology, 37, 633–655.
Ahissar, E., & Ahissar, M. (1994). Plasticity in auditory cortical circuitry. Current Opinion in Neurobiology, 4, 580–587.
Ahissar, E., Haidarliu, S., & Shulz, D. E. (1996). Possible involvement of neuromodulatory systems in cortical Hebbian-like plasticity. Journal of Physiology, 90, 353–360.
Ahissar, E., Vaaida, E., Ahissar, M., Bergman, H., Arieli, A., & Abeles, M. (1992). Dependence of cortical plasticity on correlated activity of single neurons and of behavioral context. Science, 257, 1412–1415.
Aitkin, L. (1990). The auditory cortex. London: Chapman and Hall.
Arbib, M. A. (Ed.) (1998). The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.
Armony, J. L., Servan-Schreiber, D., Cohen, J. D., & LeDoux, J. E. (1995). An anatomically constrained neural network model of fear conditioning. Behavioral Neuroscience, 109, 246–257.
Armony, J. L., Servan-Schreiber, D., Cohen, J. D. & LeDoux, J. E. (1997). Computational modeling of emotion: Explorations through the anatomy and physiology of fear conditioning. Trends in Cognitive Sciences, 1, 28–34.
Armony, J. L., Servan-Schreiber, D., Romanski, L. M., Cohen, J. D., & LeDoux, J. E. (1997). Stimulus generalization of fear responses: Effects of auditory cortex lesions in a computational model and in rats. Cerebral Cortex, 7, 157–165.
Ashe, J. H., McKenna, T. M., & Weinberger, N. M. (1989). Cholinergic modulation of frequency receptive fields in auditory cortex: II. Frequency-specific effects of anticholinesterases provide evidence for a modulatory action of endogenous ACh. Synapse, 4, 44–54.
Ashe, J. H., & Weinberger, N. M. (1991). Acetylcholine modulation of cellular excitability via muscarinic receptors: Functional plasticity in auditory cortex. In R. T. Richardson (Ed.), Activation to acquisition: Functional aspects of the basal forebrain cholinergic system (pp. 189–246). Boston: Birkhauser.
Bakin, J. S., Kwon, M. C., Masino, S. A., Weinberger, N. M., & Frostig, R. D. (1996). Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging. Cerebral Cortex, 6, 120–130.
Bakin, J. S., Lepan, B., & Weinberger, N.M. (1992). Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality. Brain Research, 577, 226–235.
Bakin, J. S., South, D. A., & Weinberger, N.M. (1996). Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance training. Behavioral Neuroscience, 110, 905–913.
Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536, 271–286.
Bakin, J. S., & Weinberger, N.M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences, 93, 11219–11224.
Bao, S., & Merzenich, M. M. (2000). Auditory cortical reorganization induced by stimulation of ventral tegmental area. Society for Neuroscience Abstracts, 26, 1477.
Barkai, E., Bergman, R. E., Horowitz, G., & Hasselmo, M. E. (1994). Modulation of associative memory function in a biophysical simulation of rat piriform cortex. Journal of Neurophysiology, 72, 659–677.
Bartus, R. T., Dean, R. L., Pontecorvo, M. J., & Flicker, C. (1985). The cholinergic hypothesis: A historical overview, current perspective, and future directions. In D. S. Olton, E. Gamzu, & S. Corkin (Eds.), Memory dysfunctions: An integration of animal and human research from preclinical and clinical perspectives (Annals of the New York Academy of Sciences, Vol. 444, pp. 332–358). New York: New York Academy of Sciences.
Baskerville, K.A., Schweitzler, J. B., & Herron, P. (1997). Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat. Neuroscience, 80, 1159–1169.
Bauer, H.-U., Der, R., & Herrmann, M. (1996). Controlling the magnification factor of self-organizing feature maps. Neural Computation, 8, 757–771.
Benukskova, L., Diamond, M. E., & Ebner, F. F. (1994). Dynamic synaptic modification threshold: Computational model of experiencedependent plasticity in adult rat barrel cortex. Proceedings of the National Academy of Sciences, 91, 4791–4795.
Bjordahl, T. S., Dimyan, M. A., & Weinberger, N. M. (1998). Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behavioral Neuroscience, 112, 467–479.
Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System. Berlin: Springer-Verlag.
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.
Butt, A. E., Testylier, G., & Dykes, R.W. (1997). Acetylcholine release in rat frontal and somatosensory cortex is enhanced during tactile discrimination learning. Psychobiology, 25, 18–33.
Cansino, S., & Williamson, S. J. (1997). Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Research, 764, 53–66.
Condon, C. D., & Weinberger, N. M. (1991). Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behavioral Neuroscience, 105, 416–430.
Cruikshank, S. J., & Weinberger, N. M. (1996a). Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: A critical review. Brain Research Reviews, 22, 191–228.
Cruikshank, S. J., & Weinberger, N. M. (1996b). Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance. Journal of Neuroscience, 16, 861–875.
de Charms, R.C., Blake, D. T., & Merzenich, M.M. (1999). A multielectrode implant device for the cerebral cortex. Journal of Neuroscience Methods, 93, 27–35.
de Charms, R. C., & Merzenich, M.M. (1996). Primary cortical representation of sounds by the coordination of action-potential timing. Nature, 381, 610–613.
de Charms, R. C., & Zador, A. (2000). Neural representation and the cortical code. Annual Review of Neuroscience, 23, 613–647.
Dekker, A. J., Connor, D. J., & Thal, L. J. (1991). The role of cholinergic projections from the nucleus basalis in memory. Neuroscience & Biobehavioral Reviews, 15, 299–317.
Delacour, J. O., Houcine, O., & Costa, J. C. (1990). Evidence for a cholinergic mechanism of “learned” changes in the responses of barrel field neurons of the awake and undrugged rat. Neuroscience, 34, 1–8.
de Pinho, M., Mazza, M., & Roque, A.C. (2000). A biologically-plausible computational model of classical conditioning induced reorganization of tonotopic maps in the auditory cortex. Neurocomputing, 32, 685–691.
de Pinho, M., & Roque-da-Silva, A. C. (1999). A realistic computational model of formation and variability of tonotopic maps in the auditory cortex. Neurocomputing, 26-7, 355–359.
Diamond, D.M., & Weinberger, N. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of pupillary responses: II. Secondary field (AII). Behavioral Neuroscience, 98, 189–210.
Diamond, D.M., & Weinberger, N.M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372, 357–360.
Diamond, D.M., & Weinberger, N.M. (1989). Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behavioral Neuroscience, 103, 471–494.
Diamond, M. E., & Ebner, F. F. (1990). Emergence of radial and modular units in neocortex.In B. L. Finlay, G. Innocenti, & H. Scheich (Eds.), The neocortex: Ontogeny and phylogeny (pp. 159–171). New York: Plenum.
Diamond, M. E., Petersen, R. S., & Harris, J. A. (1999). Learning through maps: Functional significance of topographic organization in primary sensory cortex. Journal of Neurobiology, 41, 64–68.
Dimyan, M. A., & Weinberger, N. M. (1999). Basal forebrain stimulation induces discriminative receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 113, 691–702.
Dykes, R. W. (1997). Mechanisms controlling neuronal plasticity in somatosensory cortex. Canadian Journal of Physiological Pharmacology, 75, 535–545.
Edeline, J.-M. (1995). The a2-adrenergic antagonist Idazoxan enhances the frequency selectivity and increases the threshold of auditory cortex neurons. Experimental Brain Research, 107, 221–240.
Edeline, J.-M. (1996). Does Hebbian synaptic plasticity explain learning-induced sensory plasticity in adult mammals? Journal of Physiology, 90, 271–276.
Edeline, J.-M. (1999). Learning-induced physiological plasticity in thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology, 57, 165–224.
Edeline, J.-M., Hars, B., Maho, C., & Hennevin, E. (1994). Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulation in the rat auditory cortex. Experimental Brain Research, 97, 373–386.
Edeline, J.-M., Neuenschwander-ElMassioui, N., & Dutrieux, G. (1990). Frequency-specific cellular changes in the auditory system during acquisition and reversal of discriminative conditioning. Psychobiology, 18, 382–393.
Edeline, J.-M., & Weinberger, N. M. (1993a). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107, 539–557.
Edeline, J.-M., & Weinberger, N.M. (1993b). Receptive field plasticity in the auditory cortex during frequency discrimination training: Selective retuning independent of task difficulty. Behavioral Neuroscience, 107, 82–103.
Ehret, G. (1997). The auditory cortex. Journal of Comparative Physiology A, 181, 547–557.
Elliot, T., & Shadbolt, N. R. (1998). A model of activity-dependent anatomical inhibitory plasticity applied to the mammalian auditory system. Biological Cybernetics, 78, 455–464.
Erwin, E., Obermayer, K., & Schulten, K. (1995). Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Computation, 7, 425–468.
Everitt, B. J., & Robbins, T. W. (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48, 649–684.
Fellous, J.-M., & Linster, C. (1998). Computational models of neuromodulation. Neural Computation, 10, 771–805.
Foeller, E., Vater, M., & Kossl, M. (2000). Influence of GABAergic inhibition on temporal response properties and frequency tuning of auditory cortex neurons in the gerbil. Abstracts of the Association for Research in Otolaryngology, 23, 12.
Fregnac, Y., & Shulz, D. E. (1999). Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. Journal of Neurobiology, 41, 69–82.
Gao, E., & Suga, N. (2000). Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: Role of the corticofugal system. Proceedings of the National Academy of Sciences, 97, 8081–8086.
Giorgetti, M., Bacciottini, L., Giovannini, M. G., Colivicchi, M. A., Goldfarb, J. O., & Blandina, P. (2000). Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. European Journal of Neuroscience, 12, 1941–1948.
Gluck, M. A., & Myers, C. E. (2001). Gateway to memory: An introduction to neural network modeling of the hippocampus and learning. Cambridge, MA: MIT Press.
Gonzalez-Lima, F., & Scheich, H. (1986). Neural substrates for toneconditioned bradycardia demonstrated with 2 deoxyglucose: II. Auditory cortex plasticity. Behavioural Brain Research, 20, 281–293.
Grajski, K. A., & Merzenich, M. M. (1990). Hebb-type dynamics is sufficient to account for the inverse magnification rule in cortical somatotopy. Neural Computation, 2, 71–84.
Gritti, I., Mainville, L., Mancia, M., & Jones, B. F. (1997). GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. Journal of Comparative Neurology, 383, 163–177.
Guenther, F.H., & Gjaja, M.N. (1996). The perceptual magnet effect as an emergent property of neural map formation. Journal of the Acoustical Society of America, 100, 1111–1121.
Hars, B., Maho, C., Edeline, J.-M., & Hennevin, E. (1993). Basal forebrain stimulation facilitates tone-evoked responses in the auditory cortex of the awake rat. Neuroscience, 56, 61–74.
Hasselmo, M.E. (1995). Neuromodulation and cortical function: Modeling the physiological basis of behavior. Behavioural Brain Research, 67, 1–27.
Jacobs, S. E., Code, R.A., & Juliano, S.L. (1991). Basal forebrain lesions alter stimulus-evoked metabolic activity in rat somatosensory cortex. Brain Research, 560, 342–345.
Jacobs, S. E., & Juliano, S. L. (1995). The impact of basal forebrain lesions on the ability of rats to perform a sensory discrimination task involving barrel cortex. Journal of Neuroscience, 14, 697–711.
Jiminez-Capdeville, M. E., Dykes, R. W., & Myasnikov, A. A. (1997). Differential control of cortical activity by the basal forebrain in rats: A role for both cholinergic and inhibitory influences. Journal of Comparative Neurology, 381, 53–67.
Joublin, F., Spengler, F., Wacquant, S., & Dinse, H. R. (1996). A columnar model of somatosensory reorganizational plasticity based on Hebbian and non-Hebbian learning rules. Biological Cybernetics, 74, 275–286.
Juliano, S. L., Ma, W., & Eslin, D. (1991). Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. Proceedings of the National Academy of Sciences, 88, 780–784.
Kaas, J. H. (1996). Plasticity of sensory representations in the auditory and other systems of adult mammals.In R. J. Salvi & D. Henderson (Eds.), Auditory system plasticity and regeneration (pp. 213–223). New York: Thieme Medical Publishers.
Kaas, J. H. (1997). Introduction: Functional plasticity in adult cortex. Seminars in Neuroscience, 9, 1–1.
Kesner, R. P. (1988). Reevaluation of the contribution of the basal forebrain cholinergic system to memory. Neurobiology of Aging, 9, 609–616.
Kilgard, M. P., & Merzenich, M.M. (1998a). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.
Kilgard, M. P., & Merzenich, M. M. (1998b). Plasticity of temporal information processing in primary auditory cortex. Nature Neuroscience, 1, 727–731.
Kohonen, T. (1987). Adaptive, associative, and self-organizing functions in neural computing. Applied Optics, 26, 4910–4918.
Kohonen, T. (1993). Physiological interpretation of the self-organizing mapping algorithm. Neural Networks, 6, 895–905.
Kohonen, T. (1997). Self-organizing maps. Berlin: Springer-Verlag.
Kraus, N., & Disterhoft, J. F. (1982). Response plasticity of single neurons in the rabbit auditory association cortex during tone-signaled learning. Brain Research, 246, 205–215.
Maalouf, M., Miasnikov, A.A., & Dykes, R.W. (1998). Blockade of cholinergic receptors in rat barrel cortex prevents long-term changes in the evoked potentials during sensory preconditioning. Journal of Neurophysiology, 80, 529–545.
Maldonado, P. E., & Gerstein, G. L. (1996). Reorganization in the auditory cortex of the rat induced by intracortical microstimulation: A multiple single-unit study. Experimental Brain Research, 112, 420–430.
Manunta, Y., & Edeline, J.-M. (1997). Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. European Journal of Neuroscience, 9, 833–847.
McKenna, T. M., Ashe, J. H., & Weinberger, N. M. (1989). Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse, 4, 30–43.
Mercado, E., III, Myers, C. E., & Gluck, M. A. (1999a). A computational model of basal forebrain modulation of auditory cortical plasticity. Cognitive Neuroscience Society Annual Meeting Program, 102, 81B.
Mercado, E., III, Myers, C. E., & Gluck, M.A. (1999b). Plasticity of spectral processing in simulated primary auditory cortex. Society for Neuroscience Abstracts, 29, 391.
Mercado, E., III, Myers, C. E., & Gluck, M.A. (2000). Modeling auditory cortical processing as an adaptive chirplet transform. Neurocomputing, 32-33, 913–919.
Mercado, E., III, Shohamy, D., Orduña, I., Gluck, M. A., & Merzenich, M. M. (2000). Plasticity of spectrotemporal sensitivities in auditory cortex. Journal of the Acoustical Society of America A, 107, 2835.
Merzenich, M.M., & Schreiner, C. E. (1992). Mammalian auditory cortex: Some comparative observations. In D. B. Webster, R. F. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 673–689). New York: Springer-Verlag.
Metherate, R., & Ashe, J.H. (1991). Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Research, 559, 163–167.
Metherate, R., & Ashe, J. H. (1993). Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse, 14, 132–143.
Metherate, R., Ashe, J. H., & Weinberger, N. M. (1990). Acetylcholine modifies neuronal acoustic rate-level functions in guinea pig auditory cortex by an action at muscarinic receptors. Synapse, 6, 364–368.
Metherate, R., Tremblay, N., & Dykes, R.W. (1987). Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex. Neuroscience, 22, 75–81.
Metherate, R., & Weinberger, N.M. (1989). Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Research, 480, 372–377.
Metherate, R., & Weinberger, N. M. (1990). Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex. Synapse, 14, 133–145.
Meyer-Base, U., & Scheich, H. (1995). Artificial implementation of auditory neurons: A comparison of biologically motivated models and a new transfer function oriented model. Biological Cybernetics, 77, 123–130.
Miranda, M. I., & Bermudez-Rattoni, F. (1999). Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proceedings of the National Academy of Sciences, 96, 6478–6482.
Molchan, S.E., Sunderland, T., McIntosh, A. R., Herscovitch, P., & Schreurs, B. G. (1994). A functional anatomical study of associative learning in humans. Proceedings of the National Academy of Sciences, 91, 8122–8126.
Morris, J. S., Friston, K. J., & Dolan, R. J. (1998). Experiencedependent modulation of tonotopic neural responses in human auditory cortex. Proceedings of the Royal Society of London: Series B, 265, 649–657.
Myers, C. E., Ermita, B. R., Harris, K., Hasselmo, M., Solomon, P., & Gluck, M. A. (1996). A computational model of cholinergic disruption of septohippocampal activity in classical eyeblink conditioning. Neurobiology of Learning & Memory, 66, 51–66.
Myers, C. E., Ermita, B. R., Hasselmo, M., & Gluck, M. A. (1998). Further implications of a computational model of septohippocampal cholinergic modulation in eyeblink conditioning. Psychobiology, 26, 1–20.
Myers, C. E., Gluck, M. A., & Granger, R. (1995). Dissociation of hippocampal and entorhinal function in associative learning: A computational approach. Psychobiology, 23, 116–138.
Ohl, F.W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field AI) of the alert Mongolian gerbil. European Journal of Neuroscience, 8, 1001–1017.
Ohl, F. W., & Scheich, H. (1997). Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. Journal of Comparative Physiology A, 181, 685–696.
Palakal, M. J., Murthy, U., Chittajallu, S.K., & Wong, D. (1995). Tonotopic representation of auditory responses using self-organizing maps. Mathematical & Computational Modelling, 22, 7–21.
Palakal, M. J., & Wong, D. (1999). Cortical representation of spatiotemporal pattern of firing evoked by echolocation signals: Population encoding of target features in real time. Journal of the Acoustical Society of America, 106, 479–490.
Pantev, C., & Lutkenhoner, B. (2000). Magnetoencephalographic studies of functional organization and plasticity of the human auditory cortex. Journal of Clinical Neurophysiology, 17, 130–142.
Pantev, C., Wollbrink, A., Roberts, L. E., Engelien, A., & Lutkenhoner, B. (1999). Short-term plasticity of the human auditory cortex. Brain Research, 842, 192–199.
Piepenbrock, C., & Obermayer, K. (2000). The effect of intracortical competition on the formation of topographic maps in models of Hebbian learning. Biological Cybernetics, 82, 345–353.
Pitton, J. W., Wang, K., & Juang, B.-H. (1996). Time-frequency analysis and auditory modeling for automatic recognition of speech. Proceedings of the IEEE, 84, 1199–1214.
Rauschecker, J. P. (1999). Auditory cortical plasticity: A comparison with other sensory systems. Trends in Neurosciences, 22, 74–80.
Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neurophysiology, 13, 87–103.
Recanzone, G.H., Schreiner, C. E., Sutter, M. L., Beitel, R. E., & Merzenich, M. M. (1999). Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. Journal of Comparative Physiology A, 185, 493–508.
Richardson, R. T., & Delong, M. R. (1991). Functional implication of tonic and phasic changes in nucleus basalis neurons. In R. T. Richardson (Ed.), Activation to acquisition: Functional aspects of the basal forebrain cholinergic system (pp. 135–166). Boston: Birkhauser.
Ritter, H., Martinez, T., & Schulten, K. (1992). Neural computation and self-organizing maps: An introduction. Reading, MA: Addison-Wesley.
Robert, A., & Eriksson, J. L. (1999). A composite model of the auditory periphery for simulating responses to complex sounds. Journal of the Acoustical Society of America, 106, 1852–1864.
Sachdev, R. N. S., Shao-Ming, L., Wiley, R. G., & Edner, F. F. (1998). Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity. Journal of Neurophysiology, 79, 3216–3228.
Sanchez-Montanes, M. A., Verschure, P. F., & Konig, P. (2000). Local and global gating of synaptic plasticity. Neural Computation, 12, 519–529.
Sarter, M., & Bruno, J. P. (1997). Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Research Reviews, 23, 28–46.
Scheich, H., Stark, H., Zuschratter, W., Ohl, F. W., & Simonis, C. E. (1997). Some functions of primary auditory cortex in learning and memory formation. In H.-J. Freund, B. A. Sabel, & O. W. Witte (Eds.), Brain plasticity, Advances in neurology (Vol. 73, pp. 179–193). Philadelphia: Lippincott-Raven.
Schreiner, C. E. (1998). Spatial distribution of responses to simple and complex sounds in primary auditory cortex. Audiology & Neurootology, 3, 104–122.
Schreiner, C. E., Read, H. L., & Sutter, M. L. (2000). Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience, 23, 501–529.
Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S., & Ahissar, E. (2000). A neuronal analogue of state-dependent learning. Nature, 403, 549–553.
Schulze, H., & Langner, G. (1999). Auditory cortical responses to amplitude modulations with spectra above frequency receptive fields: Evidence for wide spread spectral integration. Journal of Comparative Physiology A, 185, 493–508.
Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9, 577–594.
Stark, H., & Scheich, H. (1997). Dopaminergic and serotonergic systems are differentially involved in auditory cortex learning: A longterm microdialysis study of metabolites. Journal of Neurochemistry, 68, 691–697.
Suga, N. (1990). Cortical computational maps for auditory imaging. Neural Networks, 3, 3–21.
Suga, N. (1995). Processing of auditory information carried by speciesspecif ic complex sounds. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 295–313). Cambridge, MA: MIT Press.
Sutton, G.G., III, Reggia, J.A., Armentrout, S. L., & D’Autrechy, C. L. (1994). Cortical map reorganization as a competitive process. Neural Computation, 6, 1–13.
Swindale, N. V. (1996). The development of topography in the visual cortex: A review of models. Network: Computation in Neural Systems, 7, 161–247.
Swindale, N. V., & Bauer, H.-U. (1998). Application of Kohonen’s self-organizing feature map alg54orithm to cortical maps of orientation and direction preference. Proceedings of the Royal Society of London: Series B, 265, 827–838.
Tanaka, S. (1990). Theory of self-organization of cortical maps: Mathematical framework. Neural Networks, 3, 625–640.
Tchorz, J., & Kollmeier, B. (1999). A model of auditory perception as a front end for automatic speech recognition. Journal of the Acoustical Society of America, 106, 2040–2050.
Tremblay, N., Warren, R. A., & Dykes, R.W. (1990). Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. I. Cortical neurons excited by glutamate. Journal of Neurophysiology, 64, 1199–1211.
Wang, J., Caspary, D., & Salvi, R. J. (2000). GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. NeuroReport, 11, 1137–1140.
Wang, K., & Shamma, S. A. (1995a). Auditory analysis of spectrotemporal information in acoustic signals. IEEE Engineering in Medicine & Biology, 14, 186–194.
Wang, K., & Shamma, S. A. (1995b). Spectral shape analysis in the central auditory system. IEEE Transactions on Speech & Audio Processing, 3, 382–395.
Wang, X., Merzenich, M.M., Beitel, R., & Schreiner, C.H. (1995). Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: Temporal and spectral characteristics. Journal of Neurophysiology, 74, 2685–2706.
Webster, H. H., Hanisch, U. K., Dykes, R.W., & Biesold, D. (1991). Basal forebrain lesions with or without reserpine injection inhibit cortical reorganization in a rat hindpaw primary somatosensory cortex following sciatic nerve section. Somatosensory Motor Research, 8, 327–346.
Webster, H. H., Rasmusson, D. D., Dykes, R. W., Schliebs, R., Schober, W., Bruckner, G., & Biesold, D. (1991). Long-term enhancement of evoked potentials in raccoon somatosensory cortex following co-activation of the nucleus basalis of Meynert complex and cutaneous receptors. Brain Research, 545, 292–296.
Weinberger, N. M. (1993). Learning-induced changes of auditory receptive fields. Current Opinion in Neurobiology, 3, 570–577.
Weinberger, N.M. (1995). Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annual Review of Neuroscience, 18, 129–158.
Weinberger, N.M. (1997). Learning-induced receptive field plasticity in the primary auditory cortex. Seminars in Neuroscience, 9, 59–67.
Weinberger, N.M. (1998a). Physiological memory in primary auditory cortex: Characteristics and mechanisms. Neurobiology of Learning & Memory, 70, 226–251.
Weinberger, N.M. (1998b). Tuning the brain by learning and by stimulation of the nucleus basalis. Trends in Cognitive Sciences, 2, 271–273.
Weinberger, N. M., Ashe, J. H., Metherate, R., McKenna, T. M., Diamond, D. M., & Bakin, J. (1990a). Retuning auditory cortex by learning: A preliminary model of receptive field plasticity. Concepts in Neuroscience, 1, 91–132.
Weinberger, N. M., Ashe, J. H., Metherate, R., McKenna, T. M., Diamond, D. M., Bakin, J. S., Lennartz, R. C., & Cassady, J. M. (1990b). Neural adaptive information processing: A preliminary model of receptive field plasticity in auditory cortex during Pavlovian conditioning. In M. Gabriel & J. Moore (Eds.), Neurocomputation and learning: Foundations of adaptive networks (pp. 91–138). Cambridge, MA: MIT Press.
Weinberger, N. M., & Bakin, J. S. (1998). Learning-induced physiological memory in adult primary auditory cortex: Receptive field plasticity, model, and mechanisms. Audiology & Neuro-Otology, 3, 145–167.
Weinberger, N.M., & Diamond, D. (1987). Physiological plasticity in auditory cortex: Rapid induction by learning. Progress in Neurobiology, 29, 1–55.
Weinberger, N.M., Hopkins, W., & Diamond, D.M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of pupillary responses: I. Primary field (AI). Behavioral Neuroscience, 98, 171–188.
Weinberger, N.M., Javid, R., & Lepan, B. (1993). Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proceedings of the National Academy of Sciences, 90, 2394–2398.
Wellman, C. L., & Pelleymounter, M. A. (1999). Differential effects of nucleus basalis lesions in young adult and aging rats. Neurobiology of Aging, 20, 381–393.
Zaborszky, L., Pang, K., Somogyi, J., Nadasdy, Z., & Kallo, I. (1999). The basal forebrain corticopetal system revisited. In J. F. Mc-Ginty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug abuse. (Annals of the New York Academy of Sciences, Vol. 877, pp. 339–367). New York: New York Academy of Sciences.
Zoli, M., Torri, C., Jansson, A., Zini, I., Fuze, K., & Agnati, L. F. (1998). The emergence of the volume transmission concept. Brain Research Reviews, 26, 136–147. (Manuscript received May 10, 2000; revision accepted for publication September 11, 2000.)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by an APA/NIMH postdoctoral fellowship and by the Rutgers—Newark MBRS program.
Rights and permissions
About this article
Cite this article
Mercado, E., Myers, C.E. & Gluck, M.A. A computational model of mechanisms controlling experience-dependent reorganization of representational maps in auditory cortex. Cognitive, Affective, & Behavioral Neuroscience 1, 37–55 (2001). https://doi.org/10.3758/CABN.1.1.37
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/CABN.1.1.37