Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Cognitive, Affective, & Behavioral Neuroscience
  3. Article

A computational model of mechanisms controlling experience-dependent reorganization of representational maps in auditory cortex

  • Published: March 2001
  • volume 1, pages 37–55 (2001)
Download PDF
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript
A computational model of mechanisms controlling experience-dependent reorganization of representational maps in auditory cortex
Download PDF
  • Eduardo Mercado1,
  • Catherine E. Myers1 &
  • Mark A. Gluck1 
  • 499 Accesses

  • 13 Citations

  • Explore all metrics

Cite this article

Abstract

Cortical representations of sound can be modified by repeatedly pairing presentation of a pure tone with electrical stimulation of neuromodulatory neurons located in the basal forebrain (Bakin & Weinberger, 1996; Kilgard & Merzenich, 1998a). We developed a computational model to investigate the possible effects of basal forebrain modulation on map reorganization in the auditory cortex. The model is a self-organizing map with acoustic response characteristics mimicking those observed in the mammalian auditory cortex. We simulated the effects of basal forebrain modulation, using parameters intrinsic to the self-organizing map, such as the learning rate (controlling the adaptability of map nodes) and the neighborhood function (controlling the excitability of map nodes). Previous research has suggested that both parameters can be useful for characterizing the effects of neuromodulation on plasticity (Kohonen, 1993; Myers et al., 1996; Myers, Ermita, Hasselmo, & Gluck, 1998). The model successfully accounts for experimentally observed effects of pairing basal forebrain stimulation with the presentation of a single tone, but not of two tones, suggesting that auditory cortical plasticity is constrained in ways not accounted for by current theories. Despite this limitation, the model provides a useful framework for describing experience-induced changes in auditory representations and for relating such changes to variations in the excitability and adaptability of cortical neurons produced by neuromodulation.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Abbott, L., & Sejnowski, T. (Eds.) (1999). Neural codes and distributed representations: Foundations of neural computation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ahissar, E., Abeles, M., Ahissar, M., Haidarliu, S., & Vaadia, E. (1998). Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology, 37, 633–655.

    Article  PubMed  Google Scholar 

  • Ahissar, E., & Ahissar, M. (1994). Plasticity in auditory cortical circuitry. Current Opinion in Neurobiology, 4, 580–587.

    Article  PubMed  Google Scholar 

  • Ahissar, E., Haidarliu, S., & Shulz, D. E. (1996). Possible involvement of neuromodulatory systems in cortical Hebbian-like plasticity. Journal of Physiology, 90, 353–360.

    PubMed  Google Scholar 

  • Ahissar, E., Vaaida, E., Ahissar, M., Bergman, H., Arieli, A., & Abeles, M. (1992). Dependence of cortical plasticity on correlated activity of single neurons and of behavioral context. Science, 257, 1412–1415.

    Article  PubMed  Google Scholar 

  • Aitkin, L. (1990). The auditory cortex. London: Chapman and Hall.

    Google Scholar 

  • Arbib, M. A. (Ed.) (1998). The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.

    Google Scholar 

  • Armony, J. L., Servan-Schreiber, D., Cohen, J. D., & LeDoux, J. E. (1995). An anatomically constrained neural network model of fear conditioning. Behavioral Neuroscience, 109, 246–257.

    Article  PubMed  Google Scholar 

  • Armony, J. L., Servan-Schreiber, D., Cohen, J. D. & LeDoux, J. E. (1997). Computational modeling of emotion: Explorations through the anatomy and physiology of fear conditioning. Trends in Cognitive Sciences, 1, 28–34.

    Article  PubMed  Google Scholar 

  • Armony, J. L., Servan-Schreiber, D., Romanski, L. M., Cohen, J. D., & LeDoux, J. E. (1997). Stimulus generalization of fear responses: Effects of auditory cortex lesions in a computational model and in rats. Cerebral Cortex, 7, 157–165.

    Article  PubMed  Google Scholar 

  • Ashe, J. H., McKenna, T. M., & Weinberger, N. M. (1989). Cholinergic modulation of frequency receptive fields in auditory cortex: II. Frequency-specific effects of anticholinesterases provide evidence for a modulatory action of endogenous ACh. Synapse, 4, 44–54.

    Article  PubMed  Google Scholar 

  • Ashe, J. H., & Weinberger, N. M. (1991). Acetylcholine modulation of cellular excitability via muscarinic receptors: Functional plasticity in auditory cortex. In R. T. Richardson (Ed.), Activation to acquisition: Functional aspects of the basal forebrain cholinergic system (pp. 189–246). Boston: Birkhauser.

    Google Scholar 

  • Bakin, J. S., Kwon, M. C., Masino, S. A., Weinberger, N. M., & Frostig, R. D. (1996). Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging. Cerebral Cortex, 6, 120–130.

    Article  PubMed  Google Scholar 

  • Bakin, J. S., Lepan, B., & Weinberger, N.M. (1992). Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality. Brain Research, 577, 226–235.

    Article  PubMed  Google Scholar 

  • Bakin, J. S., South, D. A., & Weinberger, N.M. (1996). Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance training. Behavioral Neuroscience, 110, 905–913.

    Article  PubMed  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536, 271–286.

    Article  PubMed  Google Scholar 

  • Bakin, J. S., & Weinberger, N.M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences, 93, 11219–11224.

    Article  Google Scholar 

  • Bao, S., & Merzenich, M. M. (2000). Auditory cortical reorganization induced by stimulation of ventral tegmental area. Society for Neuroscience Abstracts, 26, 1477.

    Google Scholar 

  • Barkai, E., Bergman, R. E., Horowitz, G., & Hasselmo, M. E. (1994). Modulation of associative memory function in a biophysical simulation of rat piriform cortex. Journal of Neurophysiology, 72, 659–677.

    PubMed  Google Scholar 

  • Bartus, R. T., Dean, R. L., Pontecorvo, M. J., & Flicker, C. (1985). The cholinergic hypothesis: A historical overview, current perspective, and future directions. In D. S. Olton, E. Gamzu, & S. Corkin (Eds.), Memory dysfunctions: An integration of animal and human research from preclinical and clinical perspectives (Annals of the New York Academy of Sciences, Vol. 444, pp. 332–358). New York: New York Academy of Sciences.

    Google Scholar 

  • Baskerville, K.A., Schweitzler, J. B., & Herron, P. (1997). Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat. Neuroscience, 80, 1159–1169.

    Article  PubMed  Google Scholar 

  • Bauer, H.-U., Der, R., & Herrmann, M. (1996). Controlling the magnification factor of self-organizing feature maps. Neural Computation, 8, 757–771.

    Article  Google Scholar 

  • Benukskova, L., Diamond, M. E., & Ebner, F. F. (1994). Dynamic synaptic modification threshold: Computational model of experiencedependent plasticity in adult rat barrel cortex. Proceedings of the National Academy of Sciences, 91, 4791–4795.

    Article  Google Scholar 

  • Bjordahl, T. S., Dimyan, M. A., & Weinberger, N. M. (1998). Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behavioral Neuroscience, 112, 467–479.

    Article  PubMed  Google Scholar 

  • Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System. Berlin: Springer-Verlag.

    Google Scholar 

  • Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    Article  PubMed  Google Scholar 

  • Butt, A. E., Testylier, G., & Dykes, R.W. (1997). Acetylcholine release in rat frontal and somatosensory cortex is enhanced during tactile discrimination learning. Psychobiology, 25, 18–33.

    Google Scholar 

  • Cansino, S., & Williamson, S. J. (1997). Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task. Brain Research, 764, 53–66.

    Article  PubMed  Google Scholar 

  • Condon, C. D., & Weinberger, N. M. (1991). Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behavioral Neuroscience, 105, 416–430.

    Article  PubMed  Google Scholar 

  • Cruikshank, S. J., & Weinberger, N. M. (1996a). Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: A critical review. Brain Research Reviews, 22, 191–228.

    Article  PubMed  Google Scholar 

  • Cruikshank, S. J., & Weinberger, N. M. (1996b). Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance. Journal of Neuroscience, 16, 861–875.

    PubMed  Google Scholar 

  • de Charms, R.C., Blake, D. T., & Merzenich, M.M. (1999). A multielectrode implant device for the cerebral cortex. Journal of Neuroscience Methods, 93, 27–35.

    Article  Google Scholar 

  • de Charms, R. C., & Merzenich, M.M. (1996). Primary cortical representation of sounds by the coordination of action-potential timing. Nature, 381, 610–613.

    Article  Google Scholar 

  • de Charms, R. C., & Zador, A. (2000). Neural representation and the cortical code. Annual Review of Neuroscience, 23, 613–647.

    Article  Google Scholar 

  • Dekker, A. J., Connor, D. J., & Thal, L. J. (1991). The role of cholinergic projections from the nucleus basalis in memory. Neuroscience & Biobehavioral Reviews, 15, 299–317.

    Article  Google Scholar 

  • Delacour, J. O., Houcine, O., & Costa, J. C. (1990). Evidence for a cholinergic mechanism of “learned” changes in the responses of barrel field neurons of the awake and undrugged rat. Neuroscience, 34, 1–8.

    Article  PubMed  Google Scholar 

  • de Pinho, M., Mazza, M., & Roque, A.C. (2000). A biologically-plausible computational model of classical conditioning induced reorganization of tonotopic maps in the auditory cortex. Neurocomputing, 32, 685–691.

    Article  Google Scholar 

  • de Pinho, M., & Roque-da-Silva, A. C. (1999). A realistic computational model of formation and variability of tonotopic maps in the auditory cortex. Neurocomputing, 26-7, 355–359.

    Google Scholar 

  • Diamond, D.M., & Weinberger, N. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of pupillary responses: II. Secondary field (AII). Behavioral Neuroscience, 98, 189–210.

    Article  PubMed  Google Scholar 

  • Diamond, D.M., & Weinberger, N.M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372, 357–360.

    Article  PubMed  Google Scholar 

  • Diamond, D.M., & Weinberger, N.M. (1989). Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behavioral Neuroscience, 103, 471–494.

    Article  PubMed  Google Scholar 

  • Diamond, M. E., & Ebner, F. F. (1990). Emergence of radial and modular units in neocortex.In B. L. Finlay, G. Innocenti, & H. Scheich (Eds.), The neocortex: Ontogeny and phylogeny (pp. 159–171). New York: Plenum.

    Google Scholar 

  • Diamond, M. E., Petersen, R. S., & Harris, J. A. (1999). Learning through maps: Functional significance of topographic organization in primary sensory cortex. Journal of Neurobiology, 41, 64–68.

    Article  PubMed  Google Scholar 

  • Dimyan, M. A., & Weinberger, N. M. (1999). Basal forebrain stimulation induces discriminative receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 113, 691–702.

    Article  PubMed  Google Scholar 

  • Dykes, R. W. (1997). Mechanisms controlling neuronal plasticity in somatosensory cortex. Canadian Journal of Physiological Pharmacology, 75, 535–545.

    Article  Google Scholar 

  • Edeline, J.-M. (1995). The a2-adrenergic antagonist Idazoxan enhances the frequency selectivity and increases the threshold of auditory cortex neurons. Experimental Brain Research, 107, 221–240.

    Article  Google Scholar 

  • Edeline, J.-M. (1996). Does Hebbian synaptic plasticity explain learning-induced sensory plasticity in adult mammals? Journal of Physiology, 90, 271–276.

    PubMed  Google Scholar 

  • Edeline, J.-M. (1999). Learning-induced physiological plasticity in thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology, 57, 165–224.

    Article  PubMed  Google Scholar 

  • Edeline, J.-M., Hars, B., Maho, C., & Hennevin, E. (1994). Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulation in the rat auditory cortex. Experimental Brain Research, 97, 373–386.

    Article  Google Scholar 

  • Edeline, J.-M., Neuenschwander-ElMassioui, N., & Dutrieux, G. (1990). Frequency-specific cellular changes in the auditory system during acquisition and reversal of discriminative conditioning. Psychobiology, 18, 382–393.

    Google Scholar 

  • Edeline, J.-M., & Weinberger, N. M. (1993a). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107, 539–557.

    Article  PubMed  Google Scholar 

  • Edeline, J.-M., & Weinberger, N.M. (1993b). Receptive field plasticity in the auditory cortex during frequency discrimination training: Selective retuning independent of task difficulty. Behavioral Neuroscience, 107, 82–103.

    Article  PubMed  Google Scholar 

  • Ehret, G. (1997). The auditory cortex. Journal of Comparative Physiology A, 181, 547–557.

    Article  Google Scholar 

  • Elliot, T., & Shadbolt, N. R. (1998). A model of activity-dependent anatomical inhibitory plasticity applied to the mammalian auditory system. Biological Cybernetics, 78, 455–464.

    Article  Google Scholar 

  • Erwin, E., Obermayer, K., & Schulten, K. (1995). Models of orientation and ocular dominance columns in the visual cortex: A critical comparison. Neural Computation, 7, 425–468.

    Article  PubMed  Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48, 649–684.

    Article  PubMed  Google Scholar 

  • Fellous, J.-M., & Linster, C. (1998). Computational models of neuromodulation. Neural Computation, 10, 771–805.

    Article  PubMed  Google Scholar 

  • Foeller, E., Vater, M., & Kossl, M. (2000). Influence of GABAergic inhibition on temporal response properties and frequency tuning of auditory cortex neurons in the gerbil. Abstracts of the Association for Research in Otolaryngology, 23, 12.

    Google Scholar 

  • Fregnac, Y., & Shulz, D. E. (1999). Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. Journal of Neurobiology, 41, 69–82.

    Article  PubMed  Google Scholar 

  • Gao, E., & Suga, N. (2000). Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: Role of the corticofugal system. Proceedings of the National Academy of Sciences, 97, 8081–8086.

    Article  Google Scholar 

  • Giorgetti, M., Bacciottini, L., Giovannini, M. G., Colivicchi, M. A., Goldfarb, J. O., & Blandina, P. (2000). Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. European Journal of Neuroscience, 12, 1941–1948.

    Article  PubMed  Google Scholar 

  • Gluck, M. A., & Myers, C. E. (2001). Gateway to memory: An introduction to neural network modeling of the hippocampus and learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gonzalez-Lima, F., & Scheich, H. (1986). Neural substrates for toneconditioned bradycardia demonstrated with 2 deoxyglucose: II. Auditory cortex plasticity. Behavioural Brain Research, 20, 281–293.

    Article  PubMed  Google Scholar 

  • Grajski, K. A., & Merzenich, M. M. (1990). Hebb-type dynamics is sufficient to account for the inverse magnification rule in cortical somatotopy. Neural Computation, 2, 71–84.

    Article  Google Scholar 

  • Gritti, I., Mainville, L., Mancia, M., & Jones, B. F. (1997). GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. Journal of Comparative Neurology, 383, 163–177.

    Article  PubMed  Google Scholar 

  • Guenther, F.H., & Gjaja, M.N. (1996). The perceptual magnet effect as an emergent property of neural map formation. Journal of the Acoustical Society of America, 100, 1111–1121.

    Article  PubMed  Google Scholar 

  • Hars, B., Maho, C., Edeline, J.-M., & Hennevin, E. (1993). Basal forebrain stimulation facilitates tone-evoked responses in the auditory cortex of the awake rat. Neuroscience, 56, 61–74.

    Article  PubMed  Google Scholar 

  • Hasselmo, M.E. (1995). Neuromodulation and cortical function: Modeling the physiological basis of behavior. Behavioural Brain Research, 67, 1–27.

    Article  PubMed  Google Scholar 

  • Jacobs, S. E., Code, R.A., & Juliano, S.L. (1991). Basal forebrain lesions alter stimulus-evoked metabolic activity in rat somatosensory cortex. Brain Research, 560, 342–345.

    Article  PubMed  Google Scholar 

  • Jacobs, S. E., & Juliano, S. L. (1995). The impact of basal forebrain lesions on the ability of rats to perform a sensory discrimination task involving barrel cortex. Journal of Neuroscience, 14, 697–711.

    Google Scholar 

  • Jiminez-Capdeville, M. E., Dykes, R. W., & Myasnikov, A. A. (1997). Differential control of cortical activity by the basal forebrain in rats: A role for both cholinergic and inhibitory influences. Journal of Comparative Neurology, 381, 53–67.

    Article  Google Scholar 

  • Joublin, F., Spengler, F., Wacquant, S., & Dinse, H. R. (1996). A columnar model of somatosensory reorganizational plasticity based on Hebbian and non-Hebbian learning rules. Biological Cybernetics, 74, 275–286.

    Article  PubMed  Google Scholar 

  • Juliano, S. L., Ma, W., & Eslin, D. (1991). Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. Proceedings of the National Academy of Sciences, 88, 780–784.

    Article  Google Scholar 

  • Kaas, J. H. (1996). Plasticity of sensory representations in the auditory and other systems of adult mammals.In R. J. Salvi & D. Henderson (Eds.), Auditory system plasticity and regeneration (pp. 213–223). New York: Thieme Medical Publishers.

    Google Scholar 

  • Kaas, J. H. (1997). Introduction: Functional plasticity in adult cortex. Seminars in Neuroscience, 9, 1–1.

    Article  Google Scholar 

  • Kesner, R. P. (1988). Reevaluation of the contribution of the basal forebrain cholinergic system to memory. Neurobiology of Aging, 9, 609–616.

    Article  PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M.M. (1998a). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.

    Article  PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998b). Plasticity of temporal information processing in primary auditory cortex. Nature Neuroscience, 1, 727–731.

    Article  PubMed  Google Scholar 

  • Kohonen, T. (1987). Adaptive, associative, and self-organizing functions in neural computing. Applied Optics, 26, 4910–4918.

    Article  PubMed  Google Scholar 

  • Kohonen, T. (1993). Physiological interpretation of the self-organizing mapping algorithm. Neural Networks, 6, 895–905.

    Google Scholar 

  • Kohonen, T. (1997). Self-organizing maps. Berlin: Springer-Verlag.

    Google Scholar 

  • Kraus, N., & Disterhoft, J. F. (1982). Response plasticity of single neurons in the rabbit auditory association cortex during tone-signaled learning. Brain Research, 246, 205–215.

    Article  PubMed  Google Scholar 

  • Maalouf, M., Miasnikov, A.A., & Dykes, R.W. (1998). Blockade of cholinergic receptors in rat barrel cortex prevents long-term changes in the evoked potentials during sensory preconditioning. Journal of Neurophysiology, 80, 529–545.

    PubMed  Google Scholar 

  • Maldonado, P. E., & Gerstein, G. L. (1996). Reorganization in the auditory cortex of the rat induced by intracortical microstimulation: A multiple single-unit study. Experimental Brain Research, 112, 420–430.

    Google Scholar 

  • Manunta, Y., & Edeline, J.-M. (1997). Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. European Journal of Neuroscience, 9, 833–847.

    Article  PubMed  Google Scholar 

  • McKenna, T. M., Ashe, J. H., & Weinberger, N. M. (1989). Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse, 4, 30–43.

    Article  PubMed  Google Scholar 

  • Mercado, E., III, Myers, C. E., & Gluck, M. A. (1999a). A computational model of basal forebrain modulation of auditory cortical plasticity. Cognitive Neuroscience Society Annual Meeting Program, 102, 81B.

    Google Scholar 

  • Mercado, E., III, Myers, C. E., & Gluck, M.A. (1999b). Plasticity of spectral processing in simulated primary auditory cortex. Society for Neuroscience Abstracts, 29, 391.

    Google Scholar 

  • Mercado, E., III, Myers, C. E., & Gluck, M.A. (2000). Modeling auditory cortical processing as an adaptive chirplet transform. Neurocomputing, 32-33, 913–919.

    Article  Google Scholar 

  • Mercado, E., III, Shohamy, D., Orduña, I., Gluck, M. A., & Merzenich, M. M. (2000). Plasticity of spectrotemporal sensitivities in auditory cortex. Journal of the Acoustical Society of America A, 107, 2835.

    Article  Google Scholar 

  • Merzenich, M.M., & Schreiner, C. E. (1992). Mammalian auditory cortex: Some comparative observations. In D. B. Webster, R. F. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 673–689). New York: Springer-Verlag.

    Google Scholar 

  • Metherate, R., & Ashe, J.H. (1991). Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Research, 559, 163–167.

    Article  PubMed  Google Scholar 

  • Metherate, R., & Ashe, J. H. (1993). Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse, 14, 132–143.

    Article  PubMed  Google Scholar 

  • Metherate, R., Ashe, J. H., & Weinberger, N. M. (1990). Acetylcholine modifies neuronal acoustic rate-level functions in guinea pig auditory cortex by an action at muscarinic receptors. Synapse, 6, 364–368.

    Article  PubMed  Google Scholar 

  • Metherate, R., Tremblay, N., & Dykes, R.W. (1987). Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex. Neuroscience, 22, 75–81.

    Article  PubMed  Google Scholar 

  • Metherate, R., & Weinberger, N.M. (1989). Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Research, 480, 372–377.

    Article  PubMed  Google Scholar 

  • Metherate, R., & Weinberger, N. M. (1990). Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex. Synapse, 14, 133–145.

    Article  Google Scholar 

  • Meyer-Base, U., & Scheich, H. (1995). Artificial implementation of auditory neurons: A comparison of biologically motivated models and a new transfer function oriented model. Biological Cybernetics, 77, 123–130.

    Article  Google Scholar 

  • Miranda, M. I., & Bermudez-Rattoni, F. (1999). Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proceedings of the National Academy of Sciences, 96, 6478–6482.

    Article  Google Scholar 

  • Molchan, S.E., Sunderland, T., McIntosh, A. R., Herscovitch, P., & Schreurs, B. G. (1994). A functional anatomical study of associative learning in humans. Proceedings of the National Academy of Sciences, 91, 8122–8126.

    Article  Google Scholar 

  • Morris, J. S., Friston, K. J., & Dolan, R. J. (1998). Experiencedependent modulation of tonotopic neural responses in human auditory cortex. Proceedings of the Royal Society of London: Series B, 265, 649–657.

    Article  Google Scholar 

  • Myers, C. E., Ermita, B. R., Harris, K., Hasselmo, M., Solomon, P., & Gluck, M. A. (1996). A computational model of cholinergic disruption of septohippocampal activity in classical eyeblink conditioning. Neurobiology of Learning & Memory, 66, 51–66.

    Article  Google Scholar 

  • Myers, C. E., Ermita, B. R., Hasselmo, M., & Gluck, M. A. (1998). Further implications of a computational model of septohippocampal cholinergic modulation in eyeblink conditioning. Psychobiology, 26, 1–20.

    Google Scholar 

  • Myers, C. E., Gluck, M. A., & Granger, R. (1995). Dissociation of hippocampal and entorhinal function in associative learning: A computational approach. Psychobiology, 23, 116–138.

    Google Scholar 

  • Ohl, F.W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field AI) of the alert Mongolian gerbil. European Journal of Neuroscience, 8, 1001–1017.

    Article  PubMed  Google Scholar 

  • Ohl, F. W., & Scheich, H. (1997). Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. Journal of Comparative Physiology A, 181, 685–696.

    Article  Google Scholar 

  • Palakal, M. J., Murthy, U., Chittajallu, S.K., & Wong, D. (1995). Tonotopic representation of auditory responses using self-organizing maps. Mathematical & Computational Modelling, 22, 7–21.

    Article  Google Scholar 

  • Palakal, M. J., & Wong, D. (1999). Cortical representation of spatiotemporal pattern of firing evoked by echolocation signals: Population encoding of target features in real time. Journal of the Acoustical Society of America, 106, 479–490.

    Article  PubMed  Google Scholar 

  • Pantev, C., & Lutkenhoner, B. (2000). Magnetoencephalographic studies of functional organization and plasticity of the human auditory cortex. Journal of Clinical Neurophysiology, 17, 130–142.

    Article  PubMed  Google Scholar 

  • Pantev, C., Wollbrink, A., Roberts, L. E., Engelien, A., & Lutkenhoner, B. (1999). Short-term plasticity of the human auditory cortex. Brain Research, 842, 192–199.

    Article  PubMed  Google Scholar 

  • Piepenbrock, C., & Obermayer, K. (2000). The effect of intracortical competition on the formation of topographic maps in models of Hebbian learning. Biological Cybernetics, 82, 345–353.

    Article  PubMed  Google Scholar 

  • Pitton, J. W., Wang, K., & Juang, B.-H. (1996). Time-frequency analysis and auditory modeling for automatic recognition of speech. Proceedings of the IEEE, 84, 1199–1214.

    Article  Google Scholar 

  • Rauschecker, J. P. (1999). Auditory cortical plasticity: A comparison with other sensory systems. Trends in Neurosciences, 22, 74–80.

    Article  PubMed  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neurophysiology, 13, 87–103.

    Google Scholar 

  • Recanzone, G.H., Schreiner, C. E., Sutter, M. L., Beitel, R. E., & Merzenich, M. M. (1999). Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. Journal of Comparative Physiology A, 185, 493–508.

    Article  Google Scholar 

  • Richardson, R. T., & Delong, M. R. (1991). Functional implication of tonic and phasic changes in nucleus basalis neurons. In R. T. Richardson (Ed.), Activation to acquisition: Functional aspects of the basal forebrain cholinergic system (pp. 135–166). Boston: Birkhauser.

    Google Scholar 

  • Ritter, H., Martinez, T., & Schulten, K. (1992). Neural computation and self-organizing maps: An introduction. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Robert, A., & Eriksson, J. L. (1999). A composite model of the auditory periphery for simulating responses to complex sounds. Journal of the Acoustical Society of America, 106, 1852–1864.

    Article  PubMed  Google Scholar 

  • Sachdev, R. N. S., Shao-Ming, L., Wiley, R. G., & Edner, F. F. (1998). Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity. Journal of Neurophysiology, 79, 3216–3228.

    PubMed  Google Scholar 

  • Sanchez-Montanes, M. A., Verschure, P. F., & Konig, P. (2000). Local and global gating of synaptic plasticity. Neural Computation, 12, 519–529.

    Article  PubMed  Google Scholar 

  • Sarter, M., & Bruno, J. P. (1997). Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Research Reviews, 23, 28–46.

    Article  PubMed  Google Scholar 

  • Scheich, H., Stark, H., Zuschratter, W., Ohl, F. W., & Simonis, C. E. (1997). Some functions of primary auditory cortex in learning and memory formation. In H.-J. Freund, B. A. Sabel, & O. W. Witte (Eds.), Brain plasticity, Advances in neurology (Vol. 73, pp. 179–193). Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Schreiner, C. E. (1998). Spatial distribution of responses to simple and complex sounds in primary auditory cortex. Audiology & Neurootology, 3, 104–122.

    Article  Google Scholar 

  • Schreiner, C. E., Read, H. L., & Sutter, M. L. (2000). Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience, 23, 501–529.

    Article  PubMed  Google Scholar 

  • Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S., & Ahissar, E. (2000). A neuronal analogue of state-dependent learning. Nature, 403, 549–553.

    Article  PubMed  Google Scholar 

  • Schulze, H., & Langner, G. (1999). Auditory cortical responses to amplitude modulations with spectra above frequency receptive fields: Evidence for wide spread spectral integration. Journal of Comparative Physiology A, 185, 493–508.

    Article  Google Scholar 

  • Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9, 577–594.

    Article  PubMed  Google Scholar 

  • Stark, H., & Scheich, H. (1997). Dopaminergic and serotonergic systems are differentially involved in auditory cortex learning: A longterm microdialysis study of metabolites. Journal of Neurochemistry, 68, 691–697.

    Article  PubMed  Google Scholar 

  • Suga, N. (1990). Cortical computational maps for auditory imaging. Neural Networks, 3, 3–21.

    Article  Google Scholar 

  • Suga, N. (1995). Processing of auditory information carried by speciesspecif ic complex sounds. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 295–313). Cambridge, MA: MIT Press.

    Google Scholar 

  • Sutton, G.G., III, Reggia, J.A., Armentrout, S. L., & D’Autrechy, C. L. (1994). Cortical map reorganization as a competitive process. Neural Computation, 6, 1–13.

    Article  Google Scholar 

  • Swindale, N. V. (1996). The development of topography in the visual cortex: A review of models. Network: Computation in Neural Systems, 7, 161–247.

    Article  Google Scholar 

  • Swindale, N. V., & Bauer, H.-U. (1998). Application of Kohonen’s self-organizing feature map alg54orithm to cortical maps of orientation and direction preference. Proceedings of the Royal Society of London: Series B, 265, 827–838.

    Article  Google Scholar 

  • Tanaka, S. (1990). Theory of self-organization of cortical maps: Mathematical framework. Neural Networks, 3, 625–640.

    Article  Google Scholar 

  • Tchorz, J., & Kollmeier, B. (1999). A model of auditory perception as a front end for automatic speech recognition. Journal of the Acoustical Society of America, 106, 2040–2050.

    Article  PubMed  Google Scholar 

  • Tremblay, N., Warren, R. A., & Dykes, R.W. (1990). Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. I. Cortical neurons excited by glutamate. Journal of Neurophysiology, 64, 1199–1211.

    PubMed  Google Scholar 

  • Wang, J., Caspary, D., & Salvi, R. J. (2000). GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. NeuroReport, 11, 1137–1140.

    Article  PubMed  Google Scholar 

  • Wang, K., & Shamma, S. A. (1995a). Auditory analysis of spectrotemporal information in acoustic signals. IEEE Engineering in Medicine & Biology, 14, 186–194.

    Article  Google Scholar 

  • Wang, K., & Shamma, S. A. (1995b). Spectral shape analysis in the central auditory system. IEEE Transactions on Speech & Audio Processing, 3, 382–395.

    Article  Google Scholar 

  • Wang, X., Merzenich, M.M., Beitel, R., & Schreiner, C.H. (1995). Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: Temporal and spectral characteristics. Journal of Neurophysiology, 74, 2685–2706.

    PubMed  Google Scholar 

  • Webster, H. H., Hanisch, U. K., Dykes, R.W., & Biesold, D. (1991). Basal forebrain lesions with or without reserpine injection inhibit cortical reorganization in a rat hindpaw primary somatosensory cortex following sciatic nerve section. Somatosensory Motor Research, 8, 327–346.

    Article  PubMed  Google Scholar 

  • Webster, H. H., Rasmusson, D. D., Dykes, R. W., Schliebs, R., Schober, W., Bruckner, G., & Biesold, D. (1991). Long-term enhancement of evoked potentials in raccoon somatosensory cortex following co-activation of the nucleus basalis of Meynert complex and cutaneous receptors. Brain Research, 545, 292–296.

    Article  PubMed  Google Scholar 

  • Weinberger, N. M. (1993). Learning-induced changes of auditory receptive fields. Current Opinion in Neurobiology, 3, 570–577.

    Article  PubMed  Google Scholar 

  • Weinberger, N.M. (1995). Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annual Review of Neuroscience, 18, 129–158.

    Article  PubMed  Google Scholar 

  • Weinberger, N.M. (1997). Learning-induced receptive field plasticity in the primary auditory cortex. Seminars in Neuroscience, 9, 59–67.

    Article  Google Scholar 

  • Weinberger, N.M. (1998a). Physiological memory in primary auditory cortex: Characteristics and mechanisms. Neurobiology of Learning & Memory, 70, 226–251.

    Article  Google Scholar 

  • Weinberger, N.M. (1998b). Tuning the brain by learning and by stimulation of the nucleus basalis. Trends in Cognitive Sciences, 2, 271–273.

    Article  PubMed  Google Scholar 

  • Weinberger, N. M., Ashe, J. H., Metherate, R., McKenna, T. M., Diamond, D. M., & Bakin, J. (1990a). Retuning auditory cortex by learning: A preliminary model of receptive field plasticity. Concepts in Neuroscience, 1, 91–132.

    Google Scholar 

  • Weinberger, N. M., Ashe, J. H., Metherate, R., McKenna, T. M., Diamond, D. M., Bakin, J. S., Lennartz, R. C., & Cassady, J. M. (1990b). Neural adaptive information processing: A preliminary model of receptive field plasticity in auditory cortex during Pavlovian conditioning. In M. Gabriel & J. Moore (Eds.), Neurocomputation and learning: Foundations of adaptive networks (pp. 91–138). Cambridge, MA: MIT Press.

    Google Scholar 

  • Weinberger, N. M., & Bakin, J. S. (1998). Learning-induced physiological memory in adult primary auditory cortex: Receptive field plasticity, model, and mechanisms. Audiology & Neuro-Otology, 3, 145–167.

    Article  Google Scholar 

  • Weinberger, N.M., & Diamond, D. (1987). Physiological plasticity in auditory cortex: Rapid induction by learning. Progress in Neurobiology, 29, 1–55.

    Article  PubMed  Google Scholar 

  • Weinberger, N.M., Hopkins, W., & Diamond, D.M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of pupillary responses: I. Primary field (AI). Behavioral Neuroscience, 98, 171–188.

    Article  PubMed  Google Scholar 

  • Weinberger, N.M., Javid, R., & Lepan, B. (1993). Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proceedings of the National Academy of Sciences, 90, 2394–2398.

    Article  Google Scholar 

  • Wellman, C. L., & Pelleymounter, M. A. (1999). Differential effects of nucleus basalis lesions in young adult and aging rats. Neurobiology of Aging, 20, 381–393.

    Article  PubMed  Google Scholar 

  • Zaborszky, L., Pang, K., Somogyi, J., Nadasdy, Z., & Kallo, I. (1999). The basal forebrain corticopetal system revisited. In J. F. Mc-Ginty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug abuse. (Annals of the New York Academy of Sciences, Vol. 877, pp. 339–367). New York: New York Academy of Sciences.

    Google Scholar 

  • Zoli, M., Torri, C., Jansson, A., Zini, I., Fuze, K., & Agnati, L. F. (1998). The emergence of the volume transmission concept. Brain Research Reviews, 26, 136–147. (Manuscript received May 10, 2000; revision accepted for publication September 11, 2000.)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave., 07102, Newark, NJ

    Eduardo Mercado, Catherine E. Myers & Mark A. Gluck

Authors
  1. Eduardo Mercado
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Catherine E. Myers
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mark A. Gluck
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Eduardo Mercado.

Additional information

This work was supported by an APA/NIMH postdoctoral fellowship and by the Rutgers—Newark MBRS program.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mercado, E., Myers, C.E. & Gluck, M.A. A computational model of mechanisms controlling experience-dependent reorganization of representational maps in auditory cortex. Cognitive, Affective, & Behavioral Neuroscience 1, 37–55 (2001). https://doi.org/10.3758/CABN.1.1.37

Download citation

  • Received: 10 May 2000

  • Accepted: 11 September 2000

  • Issue Date: March 2001

  • DOI: https://doi.org/10.3758/CABN.1.1.37

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Receptive Field
  • Auditory Cortex
  • Basal Forebrain
  • Neighborhood Size
  • Nucleus Basalis
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

44.197.101.251

Not affiliated

Springer Nature

© 2023 Springer Nature