Behavior Research Methods

, Volume 42, Issue 2, pp 488–496 | Cite as

The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords

  • Ludovic FerrandEmail author
  • Boris New
  • Marc Brysbaert
  • Emmanuel Keuleers
  • Patrick Bonin
  • Alain Méot
  • Maria Augustinova
  • Christophe Pallier


The French Lexicon Project involved the collection of lexical decision data for 38,840 French words and the same number of nonwords. It was directly inspired by the English Lexicon Project (Balota et al., 2007) and produced very comparable frequency and word length effects. The present article describes the methods used to collect the data, reports analyses on the word frequency and the word length effects, and describes the Excel files that make the data freely available for research purposes. The word and pseudoword data from this article may be downloaded from


Target Word Word Recognition Lexical Decision Word Frequency Behavior Research Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material (7.1 mb)
Supplementary material, approximately 340 KB.


  1. Assink, E. M. H., & Sandra, D. (Eds.) (2003). Reading complex words: Cross-language studies. New York: Kluwer Academic/Plenum.Google Scholar
  2. Baayen, R. H., Feldman, L. B., & Schreuder, R. (2006). Morphological influences on the recognition of monosyllabic monomorphemic words. Journal of Memory & Language, 55, 290–313.CrossRefGoogle Scholar
  3. Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). Visual word recognition for single syllable words. Journal of Experimental Psychology: General, 133, 283–316.CrossRefGoogle Scholar
  4. Balota, D. A., Pilotti, M., & Cortese, M. J. (2001). Subjective frequency estimates for 2,938 monosyllabic words. Memory & Cognition, 29, 639–647.CrossRefGoogle Scholar
  5. Balota, D. A., & Spieler, D. H. (1998). The utility of item-level analyses in model evaluation: A reply to Seidenberg and Plaut. Psychological Science, 9, 238–240.CrossRefGoogle Scholar
  6. Balota, D. A., Yap, M. J., & Cortese, M. J. (2006). Visual word recognition: The journey from features to meaning (a travel update). In M. J. Traxler & M. A. Gernsbacher (Eds.), Handbook of psycholinguistics (2nd ed.). London: Academic Press.Google Scholar
  7. Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., et al. (2007). The English Lexicon Project. Behavior Research Methods, 39, 445–459.CrossRefPubMedGoogle Scholar
  8. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41, 977–990.CrossRefPubMedGoogle Scholar
  9. Burgess, C., & Livesay, K. (1998). The effect of corpus size in predicting reaction time in a basic word recognition task: Moving on from Kučera and Francis. Behavior Research Methods, Instruments, & Computers, 30, 272–277.CrossRefGoogle Scholar
  10. Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In S. Dornic (Ed.), Attention and performance VI (pp. 535–555). Hillsdale, NJ: Erlbaum.Google Scholar
  11. Cortese, M. J., & Fugett, A. (2004). Imageability ratings for 3,000 monosyllabic words. Behavior Research Methods, Instruments, & Computers, 36, 384–387.CrossRefGoogle Scholar
  12. Cortese, M. J., & Khanna, M. M. (2007). Age of acquisition predicts naming and lexical-decision performance above and beyond 22 other predictor variables: An analysis of 2,342 words. Quarterly Journal of Experimental Psychology, 60, 1072–1082.CrossRefGoogle Scholar
  13. Cortese, M. J., & Khanna, M. M. (2008). Age of acquisition ratings for 3,000 monosyllabic words. Behavior Research Methods, 40, 791–794.CrossRefPubMedGoogle Scholar
  14. Davis, C. J., & Taft, M. (2005). More words in the neighborhood: Interference in lexical decision due to deletion neighbors. Psychonomic Bulletin & Review, 12, 904–910.CrossRefGoogle Scholar
  15. De Moor, W., & Brysbaert, M. (2000). Neighborhood-frequency effects when primes and targets are of different lengths. Psychological Research, 63, 159–162.CrossRefPubMedGoogle Scholar
  16. Desrochers, A., & Thompson, G. L. (2009). Subjective frequency and imageability ratings for 3,600 French nouns. Behavior Research Methods, 41, 546–557.CrossRefPubMedGoogle Scholar
  17. Faust, M. E., Balota, D. A., Spieler, D. H., & Ferraro, F. R. (1999). Individual differences in information-processing rate and amount: Implications for group differences in response latency. Psychological Bulletin, 125, 777–799.CrossRefPubMedGoogle Scholar
  18. Ferrand, L., Bonin, P., Méot, A., Augustinova, M., New, B., Pallier, C., & Brysbaert, M. (2008). Age-of-acquisition and subjective frequency estimates for all generally known monosyllabic French words and their relation with other psycholinguistic variables. Behavior Research Methods, 40, 1049–1054.CrossRefPubMedGoogle Scholar
  19. Ferrand, L., & New, B. (2003). Syllabic length effects in visual word recognition and naming. Acta Psychologica, 113, 167–183.CrossRefPubMedGoogle Scholar
  20. Ferrand, L., & Segui, J. (2003). Reading aloud polysyllabic words. In E. M. H. Assink & D. Sandra (Eds.), Reading complex words: Cross language studies (pp. 295–314). New York: Kluwer Academic/ Plenum.Google Scholar
  21. Ferrand, L., Segui, J., & Grainger, J. (1996). Masked priming of word and picture naming: The role of syllabic units. Journal of Memory & Language, 35, 708–723.CrossRefGoogle Scholar
  22. Ferrand, L., Segui, J., & Humphreys, G. W. (1997). The syllable’s role in word naming. Memory & Cognition, 25, 458–470.CrossRefGoogle Scholar
  23. Forster, K. I. (2000). The potential for experimenter bias effects in word recognition experiments. Memory & Cognition, 28, 1109–1115.CrossRefGoogle Scholar
  24. Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116–124.CrossRefGoogle Scholar
  25. Frederiksen, J. R., & Kroll, J. F. (1976). Spelling and sound: Approaches to the internal lexicon. Journal of Experimental Psychology: Human Perception & Performance, 2, 361–379.CrossRefGoogle Scholar
  26. Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographic depth: A multilingual comparison. Journal of Experimental Psychology: Human Perception & Performance, 13, 104–115.CrossRefGoogle Scholar
  27. Kessler, B., Treiman, R., & Mullennix, J. (2002). Phonetic biases in voice key response time measurements. Journal of Memory & Language, 47, 145–171.CrossRefGoogle Scholar
  28. Kučera, H., & Francis, W. (1967). Computational analyses of presentday American English. Providence, RI: Brown University Press.Google Scholar
  29. New, B., Brysbaert, M., Segui, J., Ferrand, L., & Rastle, K. (2004). The processing of singular and plural nouns in French and English. Journal of Memory & Language, 51, 568–585.CrossRefGoogle Scholar
  30. New, B., Brysbaert, M., Veronis, J., & Pallier, C. (2007). The use of film subtitles to estimate word frequencies. Applied Psycholinguistics, 28, 661–677.CrossRefGoogle Scholar
  31. New, B., Ferrand, L., Pallier, C., & Brysbaert, M. (2006). Reexamining the word length effect in visual word recognition: New evidence from the English Lexicon Project. Psychonomic Bulletin & Review, 13, 45–52.CrossRefGoogle Scholar
  32. New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36, 516–524.CrossRefGoogle Scholar
  33. Perea, M., & Lupker, S. J. (2003). Transposed-letter confusability effects in masked form priming. In S. Kinoshita & S. J. Lupker (Eds.), Masked priming: State of the art (pp. 97–120). Hove, U.K.: Psychology Press.Google Scholar
  34. Rastle, K. (2007). Visual word recognition. In M. G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 71–88). Oxford: Oxford University Press.Google Scholar
  35. Rastle, K., Croot, K. P., Harrington, J. M., & Coltheart, M. (2005). Characterizing the motor execution stage of speech production: Consonantal effects on delayed naming latency and onset duration. Journal of Experimental Psychology: Human Perception & Performance, 31, 1083–1095.CrossRefGoogle Scholar
  36. Rastle, K., & Davis, M. H. (2002). On the complexities of measuring naming. Journal of Experimental Psychology: Human Perception & Performance, 28, 307–314.CrossRefGoogle Scholar
  37. Share, D. L. (2008). On the Anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134, 584–615.CrossRefPubMedGoogle Scholar
  38. Shimizu, H. (2002). Measuring keyboard response delays by comparing keyboard and joystick inputs. Behavior Research Methods, Instruments, & Computers, 34, 250–256.CrossRefGoogle Scholar
  39. Sibley, D. E., Kello, C. T., & Seidenberg, M. S. (2009). Error, error everywhere: A look at megastudies of word reading. In N. Taatgen & H. Van Rijn (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 1036–1041). Amsterdam: Cognitive Science Society.Google Scholar
  40. Stadthagen-Gonzalez, H., & Davis, C. J. (2006). The Bristol norms for age of acquisition, imageability, and familiarity. Behavior Research Methods, 38, 598–605.CrossRefPubMedGoogle Scholar
  41. van Casteren, M., & Davis, M. H. (2007). Match: A program to assist in matching the conditions of factorial experiments. Behavior Research Methods, 39, 973–978.CrossRefPubMedGoogle Scholar
  42. Whitney, C. (2008). Supporting the serial in the SERIOL model. Language & Cognitive Processes, 23, 824–865.CrossRefGoogle Scholar
  43. Yap, M., & Balota, D. A. (2009). Visual word recognition of multisyllabic words. Journal of Memory & Language, 60, 502–529.CrossRefGoogle Scholar
  44. Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15, 971–979.CrossRefGoogle Scholar
  45. Ziegler, J. C., Jacobs, A. M., & Stone, G. O. (1996). Statistical analysis of the bidirectional inconsistency of spelling and sound in French. Behavior Research Methods, Instruments, & Computers, 28, 504–515.CrossRefGoogle Scholar
  46. Ziegler, J. C., Petrova, A., & Ferrand, L. (2008). Feedback consistency effects in visual and auditory word recognition: Where do we stand after more than a decade? Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 643–661.CrossRefGoogle Scholar
  47. Ziegler, J. C., Stone, G. O., & Jacobs, A. M. (1997). What is the pronunciation for -ough and the spelling for /u/? A database for com puting feedforward and feedback consistency in English. Behavior Research Methods, Instruments, & Computers, 29, 600–618.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Ludovic Ferrand
    • 1
  • Boris New
    • 2
  • Marc Brysbaert
    • 3
  • Emmanuel Keuleers
    • 3
  • Patrick Bonin
    • 4
  • Alain Méot
    • 1
  • Maria Augustinova
    • 1
  • Christophe Pallier
    • 5
  1. 1.Laboratoire de Pscyhologie Sociale et CognitiveCNRS and University Blaise PascalClermont-FerrandFrance
  2. 2.CNRS and University Paris DescartesParisFrance
  3. 3.Ghent UniversityGhentBelgium
  4. 4.CNRS and University of BurgundyDijonFrance
  5. 5.Cognitive Neuroimaging UnitINSERM, U562Gif/YvetteFrance

Personalised recommendations