Skip to main content
Log in

Nominal analysis of “variance”

  • Articles
  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

Nominal responses are the natural way for people to report actions or opinions. Because nominal responses do not generate numerical data, they have been underutilized in behavioral research. On those occasions in which nominal responses are elicited, the responses are customarily aggregated over people or trials so that large-sample statistics can be employed. A new analysis is proposed that directly associates differences among responses with particular sources in factorial designs. A pair of nominal responses either matches or does not; when responses do not match, they vary. That analogue to variance is incorporated in the nominal analysis of “variance” (Nanova ) procedure, wherein the proportions of matches associated with sources play the same role as do sums of squares in an anova . The Nanova table is structured like an ANOVA table. The significance levels of the N ratios formed by comparing proportions are determined by resampling. Fictitious behavioral examples featuring independent groups and repeated measures designs are presented. A Windows program for the analysis is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (1990). Categorical data analysis. New York: Wiley Interscience.

    Google Scholar 

  • Anderson, N. H. (1961). Scales and statistics: Parametric and nonparametric. Psychological Bulletin, 58, 305–316. doi:10.1037/h0042576

    Article  PubMed  Google Scholar 

  • Bock, R. D. (1975). Multivariate statistical methods in behavioral research. New York: McGraw-Hill.

    Google Scholar 

  • Chen, Z., & Kuo, L. (2001). A note on the estimation of the multinomial logit model with random effects. American Statistician, 55, 89–95.

    Article  Google Scholar 

  • Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin, 70, 426–443. doi:10.1037/h0026714

    Article  Google Scholar 

  • Dyke, G. V., & Patterson, H. D. (1952). Analysis of factorial arrangements when the data are proportions. Biometrics, 8, 1–12.

    Article  Google Scholar 

  • Edgington, E. S., & Onghena, P. (2007). Randomization tests (4th ed.). Boca Raton, FL: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Fasolo, B., McClelland, G. H., & Lange, K. (2005). The effect of site design and interattribute correlations on interactive Web-based decisions. In C. P. Haugtvedt, K. Machleit, & R. Yalch (Eds.), Online consumer psychology: Understanding and influencing behavior in the virtual world (pp. 325–344). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Fienberg, S. E. (2000). Contingency tables and log-linear models: Basic results and new developments. Journal of the American Statistical Association, 95, 643–647.

    Article  Google Scholar 

  • Gini, C. (1939). Variabilità e concentrazione: Vol. 1 di. Memorie di metodologia statistica. Milano: Giuffrè.

    Google Scholar 

  • Goodman, L. A. (1971). The analysis of multidimensional contingency tables: Stepwise procedures and direct estimation methods for building models for multiple classifications. Technometrics, 13, 33–61.

    Article  Google Scholar 

  • Grizzle, J. E. (1971). Multivariate logit analysis. Biometrics, 27, 1057–1062.

    Article  PubMed  Google Scholar 

  • Haberman, S. J. (1982). Analysis of dispersion of multinomial responses. Journal of the American Statistical Association, 77, 568–580.

    Article  Google Scholar 

  • Jain, D., Vilcassim, N., & Chintagunta, P. (1994). A random-coefficients logit brand-choice model applied to panel data. Journal of Business & Economic Statistics, 12, 317–328.

    Google Scholar 

  • Keppel, G. (1991). Design and analysis: A researcher’s handbook. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • LaPiere, R. T. (1934). Attitudes and actions. Social Forces, 13, 230–237.

    Article  Google Scholar 

  • Lewis, D., & Burke, C. J. (1949). The use and misuse of the chi-square test. Psychological Bulletin, 46, 433–489. doi:10.1037/h0059088

    Article  PubMed  Google Scholar 

  • Light, R. J., & Margolin, B. H. (1971). An analysis of variance for categorical data. Journal of the American Statistical Association, 66, 534–544.

    Article  Google Scholar 

  • Lord, F. M. (1953). On the statistical treatment of football numbers. American Psychologist, 8, 750–751.

    Article  Google Scholar 

  • Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. New York: Wiley.

    Google Scholar 

  • Matheson, G. (2006). Intervals and ratios: The invariantive transformations of Stanley Smith Stevens. History of the Human Sciences, 19, 65–81. doi:10.1177/0952695106066542

    Article  Google Scholar 

  • McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zaremba (Ed.), Frontiers in economics (pp. 105–142). New York: Academic Press.

    Google Scholar 

  • Oden, G. C. (1977). Fuzziness in semantic memory: Choosing exemplars of subjective categories. Memory & Cognition, 5, 198–204.

    Article  Google Scholar 

  • Onukogu, I. B. (1985). An analysis of variance of nominal data. Biometrical Journal, 27, 375–383. doi:10.1002/bimj.4710270404

    Article  Google Scholar 

  • Pesarin, F., & De Martini, D. (2002). On unbiasedness and power of permutation tests. Metron, 60, 3–19.

    Google Scholar 

  • Rodgers, J. L. (2000). The bootstrap, the jackknife, and the randomization test: A sampling taxonomy. Multivariate Behavioral Research, 34, 441–456.

    Article  Google Scholar 

  • Shaffer, J. P. (1973). Defining and testing hypotheses in multidimensional contingency tables. Psychological Bulletin, 79, 127–141. doi:10.1037/h0033865

    Article  Google Scholar 

  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680. doi:10.1126/science.103.2684.677

    Article  PubMed  Google Scholar 

  • Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In S. S. Stevens (Ed.), Handbook of experimental psychology (pp. 1–41). New York: Wiley.

    Google Scholar 

  • Weiss, D. J. (2006). Analysis of variance and functional measurement: A practical guide. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Weiss.

Additional information

This research was supported by the U.S. Department of Homeland Security through the Center for Risk and Economic Analysis of Terrorism Events (CREATE) under Grant 2007-ST-061-000001. However, any opinions, findings, conclusions, or recommendations in this document are those of the author and do not necessarily reflect views of the U.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, D.J. Nominal analysis of “variance”. Behavior Research Methods 41, 901–908 (2009). https://doi.org/10.3758/BRM.41.3.901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BRM.41.3.901

Keywords

Navigation