Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Behavior Research Methods
  3. Article
Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Effect size measures for multilevel models: definition, interpretation, and TIMSS example

23 July 2018

Julie Lorah

Questions of value, questions of magnitude: An exploration and application of methods for comparing indirect effects in multiple mediator models

17 October 2022

Jacob J. Coutts & Andrew F. Hayes

Statistical Evaluation of Person-Oriented Mediation Using Configural Frequency Analysis

18 March 2020

Heather L. Smyth & David P. MacKinnon

Equivalence of two least-squares estimators for indirect effects

10 July 2021

WenWu Wang, Ping Yu, … Zhonghua Liu

Power analysis for conditional indirect effects: A tutorial for conducting Monte Carlo simulations with categorical exogenous variables

28 November 2022

Samuel Donnelly, Terrence D. Jorgensen & Cort W. Rudolph

Robust statistical methods in R using the WRS2 package

31 May 2019

Patrick Mair & Rand Wilcox

Multilevel multivariate meta-analysis made easy: An introduction to MLMVmeta

01 August 2022

Blakeley B. McShane & Ulf Böckenholt

r2mlm: An R package calculating R-squared measures for multilevel models

07 July 2022

Mairead Shaw, Jason D. Rights, … Jessica Kay Flake

Analytical power calculations for structural equation modeling: A tutorial and Shiny app

02 November 2020

Suzanne Jak, Terrence D. Jorgensen, … Louise Elffers

Download PDF
  • Articles
  • Published: August 2008

Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models

  • Kristopher J. Preacher1 &
  • Andrew F. Hayes2 

Behavior Research Methods volume 40, pages 879–891 (2008)Cite this article

  • 107k Accesses

  • 20044 Citations

  • 24 Altmetric

  • Metrics details

Abstract

Hypotheses involving mediation are common in the behavioral sciences. Mediation exists when a predictor affects a dependent variable indirectly through at least one intervening variable, or mediator. Methods to assess mediation involving multiple simultaneous mediators have received little attention in the methodological literature despite a clear need. We provide an overview of simple and multiple mediation and explore three approaches that can be used to investigate indirect processes, as well as methods for contrasting two or more mediators within a single model. We present an illustrative example, assessing and contrasting potential mediators of the relationship between the helpfulness of socialization agents and job satisfaction. We also provide SAS and SPSS macros, as well as Mplus and LISREL syntax, to facilitate the use of these methods in applications.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Aiken, L. S., West, S. G., Woodward, C. K., Reno, R. R., & Reynolds, K. D. (1994). Increasing screening mammography in asymptomatic women: Evaluation of a second-generation theory-based program. Health Psychology, 13, 526–538.

    Article  PubMed  Google Scholar 

  • Arbuckle, J. L. (1999). AMOS 4 [Computer software]. Chicago: Small-Waters Corp.

    Google Scholar 

  • Aroian, L. A. (1947). The probability function of the product of two normally distributed variables. Annals of Mathematical Statistics, 18, 265–271.

    Article  Google Scholar 

  • Assad, K. K., Donnellan, M. B., & Conger, R. D. (2007). Optimism: An enduring resource for romantic relationships. Journal of Personality & Social Psychology, 93, 285–297.

    Article  Google Scholar 

  • Azen, R. (2003, August). Multiple mediator models: A comparison of testing approaches. Poster presented at the 111th Annual Convention of the American Psychological Association, Toronto, Ontario.

  • Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality & Social Psychology, 51, 1173–1182.

    Article  Google Scholar 

  • Bishop, Y. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37–69.

    Article  Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Google Scholar 

  • Bollen, K. A., & Stine, R. (1990). Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology, 20, 115–140.

    Article  Google Scholar 

  • Briggs, N. (2006). Estimation of the standard error and confidence interval of the indirect effect in multiple mediator models. Dissertation Abstracts International, 37, 4755B.

    Google Scholar 

  • Brown, R. L. (1997). Assessing specific mediational effects in complex theoretical models. Structural Equation Modeling, 4, 142–156.

    Article  Google Scholar 

  • Carson, J. W., Carson, K. M., Gil, K. M., & Baucom, D. H. (2007). Self-expansion as a mediator of relationship improvements in a mindfulness intervention. Journal of Marital & Family Therapy, 33, 517–528.

    Article  Google Scholar 

  • Chao, G. T., O’Leary-Kelly, A. M., Wolf, S., Klein, H. J., & Gardner, P. D. (1994). Organizational socialization: Its content and consequences. Journal of Applied Psychology, 79, 730–743.

    Article  Google Scholar 

  • Cheung, M. W.-L. (2007). Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Structural Equation Modeling, 14, 227–246.

    Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577.

    Article  PubMed  Google Scholar 

  • Collins, L. M., Graham, J. W., & Flaherty, B. P. (1998). An alternative framework for defining mediation. Multivariate Behavioral Research, 33, 295–312.

    Article  Google Scholar 

  • Constantine, M. G. (2007). Racial microaggressions against African American clients in cross-racial counseling relationships. Journal of Counseling Psychology, 54, 1–16.

    Article  Google Scholar 

  • Craig, C. C. (1936). On the frequency function of xy. The Annals of Mathematical Statistics, 7, 1–15.

    Article  Google Scholar 

  • de Zavala, A. G., & Van Bergh, A. (2007). Need for cognitive closure and conservative political beliefs: Differential mediation by personal worldviews. Political Psychology, 28, 587–608.

    Article  Google Scholar 

  • Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82, 171–185.

    Article  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall.

    Google Scholar 

  • Fox, J. (1985). Effects analysis in structural equation models II: Calculation of specific indirect effects. Sociological Methods & Research, 14, 81–95.

    Article  Google Scholar 

  • Gudmundsdottir, B., Beck, J. G., Coffey, S. F., Miller, L., & Palyo, S. A. (2004). Quality of life and post trauma symptomatology in motor vehicle accident survivors: The mediating effects of depression and anxiety. Depression & Anxiety, 20, 187–189.

    Article  PubMed  Google Scholar 

  • Holbert, R. L., Shah, D. V., & Kwak, N. (2003). Political implications of prime-time drama and sitcom use: Genres of representation and opinions concerning women’s rights. Journal of Communication, 53, 45–60.

    Article  Google Scholar 

  • Holbert, R. L., & Stephenson, M. T. (2003). The importance of indirect effects in media effects research: Testing for mediation in structural equation modeling. Journal of Broadcasting & Electronic Media, 47, 556–572.

    Article  Google Scholar 

  • Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5, 602–619.

    Article  Google Scholar 

  • Kalyanaraman, S., & Sundar, S. S. (2006). The psychological appeal of personalized content in web portals: Does customization affect attitudes and behavior? Journal of Communication, 56, 110–132.

    Article  Google Scholar 

  • Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data analysis in social psychology. In D. Gilbert, S. T. Fiske, & G. Lindzey (Eds.), Handbook of social psychology (4th ed., Vol. 1, pp. 233–265). New York: McGraw-Hill.

    Google Scholar 

  • Klein, H. J., Fan, J., & Preacher, K. J. (2006). The effects of early socialization experiences on content mastery and outcomes: A mediational approach. Journal of Vocational Behavior, 68, 96–115.

    Article  Google Scholar 

  • Lockwood, C. M., & MacKinnon, D. P. (1998). Bootstrapping the standard error of the mediated effect. Proceedings of the 23rd Annual Meeting of SAS Users Group International (pp. 997–1002). Cary, NC: SAS Institute, Inc.

    Google Scholar 

  • MacKinnon, D. P. (1994). Analysis of mediating variables in prevention and intervention research. In A. Cázares & L. Beatty (Eds.), Scientific methods for prevention intervention research (NIDA Monograph No. 139, pp. 127–153). Rockville, MD: National Institute on Drug Abuse.

    Google Scholar 

  • MacKinnon, D. P. (2000). Contrasts in multiple mediator models. In J. Rose, L. Chassin, C. C. Presson, & S. J. Sherman (Eds.), Multivariate applications in substance use research: New methods for new questions (pp. 141–160). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • MacKinnon, D. P., & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17, 144–158.

    Article  Google Scholar 

  • MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39, 384–389.

    Article  PubMed  Google Scholar 

  • MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1, 173–181.

    Article  PubMed  Google Scholar 

  • Mackinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104.

    Article  PubMed  Google Scholar 

  • Mackinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128.

    Article  PubMed  Google Scholar 

  • Morgeson, F. P., Delaney-Klinger, K., & Hemingway, M. A. (2005). The importance of job autonomy, cognitive ability, and job-related skill for predicting role breadth and job performance. Journal of Applied Psychology, 90, 399–406.

    Article  PubMed  Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s guide (5th ed.). Los Angeles: Muthén & Muthén.

    Google Scholar 

  • Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry, Virginia Commonwealth University.

    Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717–731.

    Article  Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Contemporary approaches to assessing mediation in communication research. In A. F. Hayes, M. D. Slater, & L. B. Snyder (Eds.), The Sage sourcebook of advanced data analysis methods for communication research (pp. 13–54). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Assessing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185–227.

    Google Scholar 

  • Raver, J. L., & Gelfand, M. J. (2005). Beyond the individual victim: Linking sexual harassment, team processes, and team performance. Academy of Management Journal, 48, 387–400.

    Google Scholar 

  • Reynolds, K. D., Bishop, D. B., Chou, C.-P., Xie, B., Nebeling, L., & Perry, C. L. (2004). Contrasting mediating variables in two 5-a-day nutrition intervention programs. Preventive Medicine, 39, 882–893.

    Article  PubMed  Google Scholar 

  • Rutter, A., & Hine, D. W. (2005). Sex differences in workplace aggression: An investigation of moderation and mediation effects. Aggressive Behavior, 31, 254–270.

    Article  Google Scholar 

  • Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445.

    Article  PubMed  Google Scholar 

  • SOBEL, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology 1982 (pp. 290–312). San Francisco: Jossey-Bass.

    Google Scholar 

  • Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. In N. Tuma (Ed.), Sociological Methodology 1986 (pp. 159–186). Washington, DC: American Sociological Association.

    Google Scholar 

  • Springer, M. D. (1979). The algebra of random variables. New York: Wiley.

    Google Scholar 

  • Taylor, A. B., Mackinnon, D. P., & Tein, J.-Y. (2008). Tests of the three-path mediated effect. Organizational Research Methods, 11, 241–269.

    Article  Google Scholar 

  • West, S. G., & Aiken, L. S. (1997). Toward understanding individual effects in multicomponent prevention programs: Design and analysis strategies. In K. J. Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 167–209). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Williams, J. (2004). Resampling and distribution of the product methods for testing indirect effects in complex models. Unpublished doctoral dissertation, Arizona State University, Tempe, AZ.

    Google Scholar 

  • Williams, J., & MacKinnon, D. P. (2008). Resampling and distribution of the product methods for testing indirect effects in complex models. Structural Equation Modeling, 15, 23–51.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of Kansas, 1415 Jayhawk Blvd., Rm. 426, 66045-7556, Lawrence, KS

    Kristopher J. Preacher

  2. Ohio State University, Columbus, Ohio

    Andrew F. Hayes

Authors
  1. Kristopher J. Preacher
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrew F. Hayes
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Kristopher J. Preacher.

Additional information

This work was funded in part by National Institute on Drug Abuse Grant DA16883, awarded to K.J.P. while at the University of North Carolina at Chapel Hill.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Preacher, K.J., Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods 40, 879–891 (2008). https://doi.org/10.3758/BRM.40.3.879

Download citation

  • Received: 26 July 2007

  • Accepted: 11 March 2008

  • Issue Date: August 2008

  • DOI: https://doi.org/10.3758/BRM.40.3.879

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Indirect Effect
  • Structural Equation Modeling
  • Residual Covariance
  • Total Indirect Effect
  • Multiple Mediator Model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.226.122.122

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.