Advertisement

Psychobiology

, Volume 28, Issue 2, pp 168–186 | Cite as

The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex

  • Kalina Christoff
  • John D. E. Gabrieli
Article

Abstract

Numerous brain lesion and functional neuroimaging studies have suggested that the dorsolateral and frontopolar prefrontal regions are involved in complex cognitive processes subserving thought and memory. However, previously proposed functional subdivisions of prefrontal function have concentrated predominantly on posterior prefrontal cortex, including the dorsolateral, ventral, and medial regions. Far less consideration has been given to characterizing the psychological processes mediated by the frontopolar cortex. Here we review published neuroimaging studies of reasoning and episodic memory, two domains in which the frontopolar cortex has been frequently activated. The results suggest that dorsolateral prefrontal cortex is involved when externally generated information is being evaluated, whereas the frontopolar cortex becomes recruited when internally generated information needs to be evaluated. A hierarchical model of prefrontal function is proposed in which dorsolateral and frontopolar regions are serially recruited as a reasoning or memory task requires evaluation of internally generated information.

Keywords

Prefrontal Cortex Frontal Lobe Free Recall Episodic Memory Reasoning Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1997). Empirical analyses of BOLD fMRI statistics: II. Spatially smoothed data collected under null-hypothesis and experimental conditions. NeuroImage, 5, 199–212.PubMedGoogle Scholar
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedGoogle Scholar
  3. Andreasen, N. C., O’Leary, D. S., Arndt, S., Cizadlo, T., Hurtig, R., Rezai, K., Watkins, G. L., Ponto, L. L., & Hichwa, R. D. (1995). Short-term and long-term verbal memory: A positron emission tomography study. Proceedings of the National Academy of Sciences, 92, 5111–5115.Google Scholar
  4. Bäckman, L., Almkvist, O., Andersson, J., Nordberg, A., Winblad, B., Reineck, R., & Långström, B. (1997). Brain activation in young and older adults during implicit and explicit retrieval. Journal of Cognitive Neuroscience, 9, 378–391.PubMedGoogle Scholar
  5. Baddeley, A., & Wilson, B. (1986). Amnesia, autobiographical memory, and confabulation. In D. C. Rubin (Ed.), Autobiographical memory (pp. 225–252). Cambridge: Cambridge University Press.Google Scholar
  6. Baddeley, A., & Wilson, B. (1988). Frontal amnesia and the dysexecutive syndrome. Brain & Cognition, 7, 212–230.Google Scholar
  7. Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., & Robbins, T. W. (1996). Neural systems engaged by planning: A PET study of the Tower of London task. Neuropsychologia, 34, 515–526.PubMedGoogle Scholar
  8. Barbas, H., & Pandya, D. N. (1991). Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Frontal lobe function and dysfunction (pp. 35–58). New York: Oxford University Press.Google Scholar
  9. Berman, K. F., Ostrem, J. L., Randolph, C., Gold, J., Goldberg, T. E., Coppola, R., Carson, R. E., Herscovitch, P., & Weinberger, D. R. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia, 33, 1027–1046.PubMedGoogle Scholar
  10. Blaxton, T. A., Bookheimer, S. Y., Zeffiro, T. A., Figlozzi, C. M., Gaillard, W. D., & Theodore, W. H. (1996). Functional mapping of human memory using PET: Comparisons of conceptual and perceptual tasks. Canadian Journal of Experimental Psychology, 50, 42–56.PubMedGoogle Scholar
  11. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.PubMedGoogle Scholar
  12. Brodmann, K. (1908). Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI Mitteilung. Die Cortexgliederung des Menschen [Writings on the histological localization in the cerebral cortex: Vol. 6. Organization of the human cortex]. Journal of Psychological Neurology, 10, 213–246.Google Scholar
  13. Buckner, R. L., Koutstaal, W., Schacter, D. L., Wagner, A. D., & Rosen, B. R. (1998). Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success. NeuroImage, 7, 151–162.PubMedGoogle Scholar
  14. Buckner, R. L., Petersen, S. E., Ojemann, J. G., Miezin, F. M., Squire, L. R., & Raichle, M. E. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. Journal of Neuroscience, 15, 12–29.PubMedGoogle Scholar
  15. Buckner, R. L., Raichle, M. E., Miezin, F. M., & Petersen, S. E. (1996). Functional anatomic studies of memory retrieval for auditory words and visual pictures. Journal of Neuroscience, 16, 6219–6235.PubMedGoogle Scholar
  16. Burgess, P. W., & Shallice, T. (1996). Confabulation and the control of recollection. Memory, 4, 359–411.PubMedGoogle Scholar
  17. Cabeza, R., Kapur, S., Craik, F. I. M., McIntosh, A. R., Houle, S., & Tulving, E. (1997). Functional neuroanatomy of recall and recognition: A PET study of episodic memory. Journal of Cognitive Neuroscience, 9, 254–265.PubMedGoogle Scholar
  18. Campbell, A. W. (1905). Histological studies on the localization of cerebral function. Cambridge: Cambridge University Press.Google Scholar
  19. Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J., Servan-Schreiber, D., & Noll, D. C. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1, 293–304.Google Scholar
  20. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.PubMedGoogle Scholar
  21. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London: Series B, 351, 1413–1420.Google Scholar
  22. Della Rocchetta, A. I. (1986). Classification and recall of pictures after unilateral frontal or temporal lobectomy. Cortex, 22, 189–211.PubMedGoogle Scholar
  23. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and non-spatial working memory. Cognitive Brain Research, 7, 1–13.PubMedGoogle Scholar
  24. Di Pellegrino, G., & Wise, S. P. (1991). A neurophysiological comparison of three distinct regions of the primate frontal lobe. Brain, 114, 951–978.PubMedGoogle Scholar
  25. Elliott, R., Frith, C. D., & Dolan, R. J. (1997). Differential neural response to positive and negative feedback in planning and guessing tasks. Neuropsychologia, 35, 1395–1404.PubMedGoogle Scholar
  26. Elliott Smith, G. (1907). A new topographical survey of the human cerebral cortex. Journal of Anatomy & Physiology, 41, 237–254.Google Scholar
  27. Evans, J. S. B. T., Newstead, S. E., & Byrne, R. M. J. (1993). Human reasoning: The psychology of deduction. Hillsdale, NJ: Erlbaum.Google Scholar
  28. Fletcher, P. C., Frith, C. D., Grasby, P. M., Shallice, T., Frackowiak, R. S., & Dolan, R. J. (1995). Brain systems for encoding and retrieval of auditory-verbal memory: An in vivo study in humans. Brain, 118, 401–416.PubMedGoogle Scholar
  29. Fletcher, P. C., Shallice, T., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory: II. Retrieval. Brain, 121, 1249–1256.PubMedGoogle Scholar
  30. Fuster, J. M. (1980). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven.Google Scholar
  31. Gershberg, F. B., & Shimamura, A. P. (1995). Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia, 33, 1305–1333.PubMedGoogle Scholar
  32. Gigerenzer, G., & Murray, D. J. (1987). Cognition as intuitive statistics. Hillsdale, NJ: Erlbaum.Google Scholar
  33. Goel, V., Gold, B., Kapur, S., & Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning. Neuro-Report, 8, 1305–1310.Google Scholar
  34. Goel, V., Gold, B., Kapur, S., & Houle, S. (1998). Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience, 10, 293–302.PubMedGoogle Scholar
  35. Goel, V., & Grafman, J. (1995). Are the frontal lobes implicated in “planning” functions? Interpreting data from the Tower of Hanoi. Neuropsychologia, 33, 623–642.PubMedGoogle Scholar
  36. Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito, G., Mattay, V. S., Gold, J. M., & Weinberger, D. R. (1998). Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study. NeuroImage, 7, 296–303.PubMedGoogle Scholar
  37. Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum & V. B. Mountcastle (Eds.), Handbook of physiology: Sec. 1. The nervous system: Vol. 5. Higher functions of the brain (pp. 373–417). Bethesda, MD: American Physiological Society.Google Scholar
  38. Grasby, P. M., Frith, C. D., Friston, K. J., Bench, C., Frackowiak, R. S., & Dolan, R. J. (1993). Functional mapping of brain areas implicated in auditory-verbal memory function. Brain, 116, 1–20.PubMedGoogle Scholar
  39. Grasby, P. M., Frith, C. D., Friston, K. J., Simpson, J., Fletcher, P. C., Frackowiak, R. S., & Dolan, R. J. (1994). A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain, 117, 1271–1282.PubMedGoogle Scholar
  40. Haxby, J. V., Ungerleider, L. G., Horwitz, B., Maisog, J. M., Rapoport, S. I., & Grady, C. L. (1996). Face encoding and recognition in the human brain. Proceedings of the National Academy of Sciences, 93, 922–927.Google Scholar
  41. Henson, R. N., Shallice, T., & Dolan, R. J. (1999). Right prefrontal cortex and episodic memory retrieval: A functional MRI test of the monitoring hypothesis. Brain, 122, 1367–1381.PubMedGoogle Scholar
  42. Janowsky, J. S., Shimamura, A. P., & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27, 1043–1056.PubMedGoogle Scholar
  43. Jetter, W., Poser, U., Freeman, R. B. J., & Markowitsch, H. J. (1986). A verbal long-term memory deficit in frontal lobe damaged patients. Cortex, 22, 229–242.PubMedGoogle Scholar
  44. Johnson, M. K., Kounios, J., & Nolde, S. F. (1996). Electrophysiological brain activity and memory source monitoring. NeuroReport, 7, 2929–2932.PubMedGoogle Scholar
  45. Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9, 462–475.PubMedGoogle Scholar
  46. Kapur, S., Craik, F. I. M., Jones, C., Brown, G M., Houle, S., & Tulving, E. (1995). Functional role of the prefrontal cortex in retrieval of memories: A PET Study. NeuroReport, 6, 1880–18884.PubMedGoogle Scholar
  47. Kastrup, A., Krüger, G., Glover, G. H., Neumann-Haefelin, T., & Moseley, M. E. (1999). Regional variability of cerebral blood oxygenation response to hypercapnia. NeuroImage, 10, 675–681.PubMedGoogle Scholar
  48. Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148–151.PubMedGoogle Scholar
  49. Lierse, W. (1963). Die Kapillardichte im Wirbeltiergehirn [Density of the capillaries in the vertebrate brain]. Acta Anatomica, 54, 1–31.PubMedGoogle Scholar
  50. Luria, A. R. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books.Google Scholar
  51. MacLeod, A. K., Buckner, R. L., Miezin, F. M., Petersen, S. E., & Raichle, M. E. (1998). Right anterior prefrontal cortex activation during semantic monitoring and working memory. NeuroImage, 7, 41–48.PubMedGoogle Scholar
  52. Miller, L. A. (1985). Cognitive risk-taking after frontal or temporal lobectomy-I. The synthesis of fragmented visual information. Neuropsychologia, 23, 359–369.PubMedGoogle Scholar
  53. Miller, L. A. (1992). Impulsivity, risk-taking, and the ability to synthesize fragmented information after frontal lobectomy. Neuropsychologia, 30, 69–79.PubMedGoogle Scholar
  54. Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90–100.Google Scholar
  55. Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 313–334). New York: McGraw-Hill.Google Scholar
  56. Milner, B., Corsi, P., & Leonard, G. (1991). Frontal-lobe contribution to recency judgements. Neuropsychologia, 29, 601–618.PubMedGoogle Scholar
  57. Milner, B., Petrides, M., & Smith, M. L. (1985). Frontal lobes and the temporal organization of memory. Human Neurobiology, 4, 137–142.PubMedGoogle Scholar
  58. Moscovitch, M. (1989). Confabulation and the frontal systems: Strategic versus associative retrieval in neuropsychological theories of memory. In H. L. Roediger III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 133–160). Hillsdale, NJ: Erlbaum.Google Scholar
  59. Moscovitch, M., Kapur, S., Köhler, S., & Houle, S. (1995). Distinct neural correlates of visual long-term memory for spatial location and object identity: A positron emission tomography study in humans. Proceedings of the National Academy of Sciences, 92, 3721–3725.Google Scholar
  60. Mottaghy, F. M., Shah, N. J., Krause, B. J., Schmidt, D., Halsband, U., Jancke, L., & Muller-Gartner, H. (1999). Neuronal correlates of encoding and retrieval in episodic memory during a paired-word association learning task: A functional magnetic resonance imaging study. Experimental Brain Research, 128, 332–342.Google Scholar
  61. Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., & Kimura, J. (1996). Cerebral activation during performance of a card sorting test. Brain, 119, 1667–1675.PubMedGoogle Scholar
  62. Nolde, S. F., Johnson, M. K., & Raye, C. L. (1998). The role of prefrontal cortex during tests of episodic memory. Trends in Cognitive Sciences, 2, 399–406.PubMedGoogle Scholar
  63. Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwarts, & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.Google Scholar
  64. Nyberg, L., Cabeza, R., & Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model. Psychonomic Bulletin & Review, 3, 135–148.Google Scholar
  65. Nyberg, L., Tulving, E., Habib, R., Nilsson, L. G., Kapur, S., Houle, S., Cabeza, R., & McIntosh, A. R. (1995). Functional brain maps of retrieval mode and recovery of episodic information. Neuro-Report, 7, 249–252.Google Scholar
  66. Ojemann, J. G., Akbudak, E., Snyder, A. Z., McKinstry, R. C., Raichle, M. E., & Conturo, T. E. (1997). Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. NeuroImage, 6, 156–167.PubMedGoogle Scholar
  67. Osherson, D., Perani, D., Cappa, S., Schnur, T., Grassi, F., & Fazio, F. (1998). Distinct brain loci in deductive versus probabilistic reasoning. Neuropsychologia, 36, 369–376.PubMedGoogle Scholar
  68. Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. European Journal of Neuroscience, 9, 1329–1339.PubMedGoogle Scholar
  69. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28, 1021–1034.PubMedGoogle Scholar
  70. Owen, A. M., Doyon, J., Petrides, M, & Evans, A. (1996). Planning and spatial working memory: A positron emission tomography in humans. European Journal of Neuroscience, 8, 353–364.PubMedGoogle Scholar
  71. Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6, 31–38.PubMedGoogle Scholar
  72. Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P., Carpenter, T. A., Minhas, P. S., Turkheimer, F. E., Williams, E. J., Robbins, T. W., Sahakian, B. J., Petrides, M., & Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11, 567–574.PubMedGoogle Scholar
  73. Pandya, D. N., & Barnes, C. L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.), The frontal lobes revisited (pp. 41–72). New York: IRBN.Google Scholar
  74. Perlmutter, J. S., Powers, W. J., Herscovitch, P., Fox, P. T., & Raichle, M. E. (1987). Regional asymmetries of cerebral blood flow, blood volume, and oxygen utilization and extraction in normal subjects. Journal of Cerebral Blood Flow & Metabolism, 7, 64–61.Google Scholar
  75. Petrides, M. (1991). Monitoring of selections of visual stimuli and the primate frontal cortex. Proceedings of the Royal Society of London: Series B, 246, 293–298.Google Scholar
  76. Petrides, M. (1994). Frontal lobes and behaviour. Current Opinion in Neurobiology, 4, 207–211.PubMedGoogle Scholar
  77. Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing: Evidence from neuroimaging studies. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 85–96). New York: New York Academy of Sciences.Google Scholar
  78. Petrides, M. (1996). Lateral frontal cortical contribution to memory. Seminars in the Neurosciences, 8, 57–63.Google Scholar
  79. Petrides, M., Alivisatos, B., & Evans, A. C. (1995). Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proceedings of the National Academy of Sciences, 92, 5803–5807.Google Scholar
  80. Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences, 90, 878–882.Google Scholar
  81. Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal and temporal lobe lesions in man. Neuropsychologia, 20, 601–614.Google Scholar
  82. Petrides, M., & Pandya, D. N. (1994). Comparative architectonic analysis of the human and the macaque frontal cortex. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 17–58). Amsterdam: Elsevier.Google Scholar
  83. Prabhakaran, V, Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33, 43–63.PubMedGoogle Scholar
  84. Ragland, J. D., Gur, R. C., Glahn, D. C., Censits, D. M., Smith, R. J., Lazarev, M. G., Alavi, A., & Gur, R. E. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: A positron emission tomography study. Neuropsychology, 12, 399–413.PubMedGoogle Scholar
  85. Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M., Cox, R. W., Stein, E. A., & Binder, J. R. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. NeuroReport, 8, 1987–1993.PubMedGoogle Scholar
  86. Robbins, T. W. (1996). Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London: Series B, 351, 1463–1470.Google Scholar
  87. Robinson, A. L., Heaton, R. K., Lehman, R. A., & Stilson, D. W. (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting & Clinical Psychology, 48, 605–614.Google Scholar
  88. Rolls, E. T. (1996). The orbitofrontal cortex. Philosophical Transactions of the Royal Society of London: Series B, 351, 1433–1443.Google Scholar
  89. Rosenkilde, C. E. (1979). Functional heterogeneity of the prefrontal cortex in the monkey: A review. Behavioral & Neural Biology, 25, 301–345.Google Scholar
  90. Rugg, M. D., Fletcher, P. C., Allan, K., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1998). Neural correlates of memory retrieval during recognition memory and cued recall. NeuroImage, 8, 262–273.PubMedGoogle Scholar
  91. Rugg, M. D., Fletcher, P. C., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1996). Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval. Brain, 119, 2073–2083.PubMedGoogle Scholar
  92. Rugg, M. D., Fletcher, P. C., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1997). Brain regions supporting intentional and incidental memory: A PET study. NeuroReport, 8, 1283–1287.PubMedGoogle Scholar
  93. Rypma, B., Prabhakaran, V, Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9, 216–226.PubMedGoogle Scholar
  94. Schacter, D. L., Alpert, N. M., Savage, C. R., Rauch, S. L., & Albert, M. S. (1996). Conscious recollection and the human hippocampal formation: Evidence from positron emission topography. Proceedings of the National Academy of Sciences, 93, 321–325.Google Scholar
  95. Schacter, D. L., Curran, T., Galluccio, L., Milberg, W. P., & Bates, J. F. (1996). False recognition and the right frontal lobe: A case study. Neuropsychologia, 34, 793–808.PubMedGoogle Scholar
  96. Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London: Series B, 298, 199–209.Google Scholar
  97. Shallice, T., & Burgess, P. W. (1991a). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741.PubMedGoogle Scholar
  98. Shallice, T., & Burgess, P. W. (1991b). Higher-order cognitive impairments and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Frontal lobe function and dysfunction (pp. 125–138). New York: Oxford University Press.Google Scholar
  99. Shallice, T., Burgess, P. W., Schon, F., & Baxter, D. M. (1989). The origins of utilization behaviour. Brain, 112, 1587–1598.PubMedGoogle Scholar
  100. Shallice, T., & Evans, M. E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14, 294–303.PubMedGoogle Scholar
  101. Shallice, T., Fletcher, P., Frith, C. D., Grasby, P., Frackowiak, R. S. J., & Dolan, R. J. (1994). Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368, 633–635.PubMedGoogle Scholar
  102. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6, 11–20.PubMedGoogle Scholar
  103. Smith, M. L., & Milner, B. (1988). Estimation of frequency of occurrence of abstract designs after frontal or temporal lobectomy. Neuropsychologia, 26, 297–306.PubMedGoogle Scholar
  104. Squire, L. R., & Cohen, N. J. (1982). Remote memory, retrograde amnesia and the neuropsychology of memory. In L. S. Cermak (Ed.), Human memory and amnesia (pp. 275–303). Hillsdale, NJ: Erlbaum.Google Scholar
  105. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654.PubMedGoogle Scholar
  106. Stone, M., Seger, C. A., Prabhakaran, V., Gabrieli, J. D. E., & Glover, G. H. (1998, June). Studying privileged access with functional MRI. Paper presented at the Neural Correlates of Consciousness Conference, Bremen, Germany.Google Scholar
  107. Stuss, D. T., Alexander, M. P., Lieberman, A., & Levine, H. (1978). An extraordinary form of confabulation. Neurology, 28, 1166–1172.PubMedGoogle Scholar
  108. Stuss, D. T., & Benson, D. F. (1986). The frontal lobes. New York: Raven.Google Scholar
  109. Stuss, D. T., Eskes, G. A., & Foster, J. K. (1994). Experimental neuropsychological studies of frontal lobe functions. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 149–185). Amsterdam: Elsevier.Google Scholar
  110. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme.Google Scholar
  111. Tulving, E., Kapur, S., Markowitsch, H. J., Craik, F. I. M., Habib, R., & Houle, S. (1994). Neuroanatomical correlates of retrieval in episodic memory: Auditory sentence recognition. Proceedings of the National Academy of Sciences, 91, 2012–2015.Google Scholar
  112. Tulving, E., Markowitch, H. J., Craik, F. I. M., Habib, R., & Houle, S. (1996). Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cerebral Cortex, 6, 71–79.PubMedGoogle Scholar
  113. Vilkki, J., & Holst, P. (1991). Mental programming after frontal lobe lesions: Results on digit symbol performance with self-selected goals. Cortex, 27, 203–211.PubMedGoogle Scholar
  114. Vogt, O. (1906). Über strukturelle Hirnzentra, mit besonderer Berücksichtigung der strukturellen Felder des Cortex pallii [On the structural centers of the brain, with particular emphasis on the structural regions of the cortex]. Anatomischer Anzeiger, 20, 74–114.Google Scholar
  115. Wagner, A. D., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain, 121, 1985–2002.PubMedGoogle Scholar
  116. Wheeler, M. A., Stuss, D. T., & Tulving, E. (1995). Frontal lobe damage produces episodic memory impairment. Journal of the International Neuropsychological Society, 1, 525–536.PubMedGoogle Scholar
  117. Worsley, K. J., Marrett, S., Neelin, P., & Evans, A. C. (1996). Searching scale space for activation in PET images. Human Brain Mapping, 4, 74–90.PubMedGoogle Scholar
  118. Zarahn, E., Aguirre, G. K., & D’Esposito, M. (1997). Empirical analyses of BOLD fMRI statistics: I. Spatially unsmoothed data collected under null-hypothesis conditions. NeuroImage, 5, 179–197.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  1. 1.Department of PsychologyStanford UniversityStanfordUSA

Personalised recommendations