Advertisement

Psychobiology

, Volume 28, Issue 2, pp 146–155 | Cite as

Dissociating aspects of verbal working memory within the human frontal lobe: Further evidence for a “process-specific” model of lateral frontal organization

  • Adrian M. OwenEmail author
  • Andy C. H. Lee
  • Emma J. Williams
Article
  • 1.3k Downloads

Abstract

There is now converging evidence that suggests that working memory processes within the dorsolateral and ventrolateral frontal cortices are organized according to the type of processing required, rather than according to the nature (i.e., domain) of the information being processed, as has been widely assumed. For example, recent positron emission tomography (PET) studies have demonstrated that either, or both, of these two lateral frontal areas can be activated in spatial working memory tasks, depending on the precise executive processes that are called upon by the task being performed. Moreover, in a recent study using functional magnetic resonance imaging, performances of visual spatial and visual nonspatial working memory tasks were shown to involve identical regions of the lateral prefrontal cortex when all the factors unrelated to the type of stimulus domain were appropriately controlled. These results concur fully with recent reviews of the imaging literature, which have demonstrated that spatial and nonspatial working memory studies, in general, have produced a widely distributed pattern of overlapping activation foci within these lateral frontal regions. In this study, the effects of varying the executive requirements of a simple verbal working memory task (forward vs. backward digit span) were explored in 8 subjects, using PET, in order to establish whether this model generalizes to the verbal domain. As was expected, during forward digit span, significant activation was observed within the midventrolateral frontal cortex, but not within the middorsolateral frontal cortex. In contrast, during backward digit span, significant activation was observed in both regions. The results provide further evidence that the middorsolateral and midventrolateral frontal cortical areas make distinct functional contributions to memory and that this corresponds, in psychological terms, to a fractionation of working memory processes.

Keywords

Positron Emission Tomography Frontal Cortex Work Memory Task Digit Span Spatial Working Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andreasen, N. C., O’Leary, D. S., Arndt, S., Cizadlo, T., Hurtig, R., Rezai, K., Watkins, G. L., Boles Ponto, L. L., & Hichwa, R. D. (1995). Short-term and long-term verbal memory: A positron emission tomography study. Proceedings of the National Academy of Sciences, 92, 5111–5115.CrossRefGoogle Scholar
  2. Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7, 25–31.CrossRefGoogle Scholar
  3. Baddeley, A. D. (1986). Working memory. New York: Oxford University Press.Google Scholar
  4. Baker, S. C., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1996). Active representation of shape and location in man. Cerebral Cortex, 6, 612–619.PubMedCrossRefGoogle Scholar
  5. Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35, 1373–1380.PubMedCrossRefGoogle Scholar
  6. Becker, J. T., Mintun, M. A., Diehl, D. J., Dobkin, J., Martidis, A., Madoff, D. C., & DeKosky, S. T. (1994). Functional neuroanatomy of verbal free recall: A replication study. Human Brain Mapping, 1, 284–292.CrossRefGoogle Scholar
  7. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.PubMedCrossRefGoogle Scholar
  8. Callicot, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., & Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 20–26.CrossRefGoogle Scholar
  9. Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J., Servan-Schreiber, D., & Noll, D. C. (1994). Activation of prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1, 293–304.CrossRefGoogle Scholar
  10. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608.PubMedCrossRefGoogle Scholar
  11. Collette, F., Salmon, E., Van der Linden, M., Chicherio, C., Belleville, S., Degueldre, C., Delfiore, G., & Franck, G. (1999). Regional brain activity during tasks devoted to the central executive of working memory. Cognitive Brain Research, 7, 411–417.PubMedCrossRefGoogle Scholar
  12. Coull, J. T., Frith, C. D., Frackowiak, R. S. J., & Grasby, P. M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34, 1085–1095.PubMedCrossRefGoogle Scholar
  13. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347–1351.PubMedCrossRefGoogle Scholar
  14. Courtney, S. M, Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6, 39–49.PubMedCrossRefGoogle Scholar
  15. Courtney, S. M., Ungerleider, L. G., Keil, K. K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.PubMedCrossRefGoogle Scholar
  16. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., Lease, J., & Tang, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.PubMedCrossRefGoogle Scholar
  17. D’Esposito, M., Ballard, D., Aguirre, G. K., & Zarahn, E. (1998). Human prefrontal cortex is not specific for working memory: A functional MRI study. NeuroImage, 8, 274–282.PubMedCrossRefGoogle Scholar
  18. D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain & Cognition, 41, 66–86.CrossRefGoogle Scholar
  19. de Zubicaray, G. I., Williams, S. C. R., Wilson, S. J., Rose, S. E., Brammer, M. J., Bullmore, E. T., Simmons, A., Chalk, J. B., Semple, J., Brown, A. P., Smith, G. A., Ashton, R., & Doddrell, D. M. (1998). Prefrontal cortex involvement in selective letter generation: A functional magnetic resonance imaging study. Cortex, 34, 389–401.PubMedCrossRefGoogle Scholar
  20. Elliot, R., & Dolan, R. J. (1999). Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals. Journal of Neuroscience, 19, 5066–5073.Google Scholar
  21. Fiez, J. A., Raife, E. A., Balota, D. A., Schwarz, J. P., Raichle, M. E., & Petersen, S. E. (1996). A positron emission tomography study of the short-term maintenance of verbal information. Journal of Neuroscience, 16, 808–822.PubMedGoogle Scholar
  22. Fletcher, P., Shallice, T., & Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory: I. Encoding. Brain, 121, 1239–1248.PubMedCrossRefGoogle Scholar
  23. Fletcher, P., Shallice, T., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory: II. Retrieval. Brain, 121, 1249–1256.PubMedCrossRefGoogle Scholar
  24. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 1–19.Google Scholar
  25. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1990). Visuospatial coding of primate prefrontal neurons revealed by oculomotor paradigms. Journal of Neurophysiology, 63, 814–831.PubMedGoogle Scholar
  26. Fuster, J. M. (1995). Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate brain. Cambridge, MA: MIT Press.Google Scholar
  27. Gold, J. M., Berman, K. F., Randolph, C., Goldberg, T. E., & Weinberger, D. R. (1996). PET validation of a novel prefrontal task: Delayed response alternation. Neuropsychology, 10, 3–10.CrossRefGoogle Scholar
  28. Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito, G., Mattey, V. S., Gold, J. M., & Weinberger, D. R. (1998). Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study. NeuroImage, 7, 296–303.PubMedCrossRefGoogle Scholar
  29. Goldberg, T. E., Berman, K. F., Randolph, C., Gold, J. M., & Weinberger, D. R. (1996). Isolating the mnemonic component in spatial delayed response: A controlled PET 15O-labelled water regional cerebral blood flow study in normal humans. NeuroImage, 3, 69–78.PubMedCrossRefGoogle Scholar
  30. Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and the regulation of behavior by representational memory. In F. Plum & V. Mountcastle (Eds.), Handbook of physiology: Sec. 1. The nervous system: Vol. 5. Higher functions of the brain (pp. 373–417). Bethesda, MD: American Physiological Society.Google Scholar
  31. Goldman-Rakic, P. S. (1994). The issue of memory in the study of prefrontal functions. In A. M. Thierry, J. Glowinski, P. S. Goldman-Rakic, & Y. Christen (Eds.), Motor and cognitive functions of the prefrontal cortex. Berlin: Springer-Verlag.Google Scholar
  32. Goldman-Rakic, P. S. (1995). Architecture of the prefrontal cortex and the central executive. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 71–83). New York: New York Academy of Sciences.Google Scholar
  33. Grasby, P. M., Frith, C. D., Friston, K. J., Bench, C., Frackowiak, R. S. J., & Dolan, R. J. (1993). Functional mapping of brain areas implicated in auditory-verbal memory function. Brain, 116, 1–20.PubMedCrossRefGoogle Scholar
  34. Grasby, P. M., Frith, C. D., Friston, K. J., Simpson, J., Fletcher, P. C., Frackowiak, R. S. J., & Dolan, R. J. (1994). A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain, 117, 1271–1282.PubMedCrossRefGoogle Scholar
  35. Haxby, J. V., Ungerleider, L. G., Horwitz, B., Rapoport, S. I., & Grady, C. L. (1995). Hemispheric differences in neural systems for face working memory: A PET-rCBF study. Human Brain Mapping, 3, 68–82.CrossRefGoogle Scholar
  36. Honig, W. K. (1978). Studies of working memory in the pigeon. In S. H. Hulse, H. Fowler, & W. K. Honig (Eds.), Cognitive processes in animal behaviour (pp. 211–248). Hillsdale, NJ: Erlbaum.Google Scholar
  37. Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A., Marshuetz, C., & Willis, C. R. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience, 18, 5026–5034.PubMedGoogle Scholar
  38. Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9, 462–475.PubMedCrossRefGoogle Scholar
  39. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.PubMedCrossRefGoogle Scholar
  40. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95, 8410–8413.CrossRefGoogle Scholar
  41. Kapur, S., Tulving, E., Cabeza, R., McIntosh, A. R., Houle, S., & Craik, F. I. M. (1996). The neural correlates of intentional learning of verbal materials: A PET study. Cognitive Brain Research, 4, 243–249.PubMedCrossRefGoogle Scholar
  42. Levy, R., & Goldman-Rakic, P. S. (1999). Association of storage and processing functions in the dorsolateral prefrontal cortex of the non-human primate. Journal of Neuroscience, 19, 5149–5158.PubMedGoogle Scholar
  43. McCarthy, G., Blamire, A. M., Puce, A., Nobre, A. C., Bloch, G., Hyder, F, Goldman-Rakic, P., & Shulman, R G. (1994). Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proceedings of the National Academy of Sciences, 91, 8690–8694.CrossRefGoogle Scholar
  44. McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., & Goldman-Rakic, P. S. (1996). Activation of human prefrontal cortex activation during spatial and nonspatial working memory tasks measured by functional MRI. Cerebral Cortex, 6, 600–611.PubMedCrossRefGoogle Scholar
  45. Milner, B. (1971). Interhemispheric differences in the localisation of psychological processes in man. British Medical Bulletin, 27, 272–277.PubMedGoogle Scholar
  46. Olton, D. S. (1982). Spatially organised behaviours of animals: Behavioural and neurological studies. In M. Potegal (Ed.), Spatial abilities (pp. 325–360). New York: Academic Press.Google Scholar
  47. Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. European Journal of Neuroscience, 9, 1329–1339.PubMedCrossRefGoogle Scholar
  48. Owen, A. M. (in press). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research.Google Scholar
  49. Owen, A. M., Downes, J. D., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28, 1021–1034.PubMedCrossRefGoogle Scholar
  50. Owen, A. M., Doyon, J., Petrides, M., & Evans, A. C. (1996). Planning and spatial working memory examined with positron emission tomography (PET). European Journal of Neuroscience, 8, 353–364.PubMedCrossRefGoogle Scholar
  51. Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6, 31–38.PubMedCrossRefGoogle Scholar
  52. Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P. M. J., Carpenter, T. A., Minhas, P. S., Turkheimer, F. E., Williams, E. J., Robbins, T. W., Sahakian, B. J., Petrides, M., & Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11, 567–574.PubMedCrossRefGoogle Scholar
  53. Owen, A. M., Morris, R. G., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1996). Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Brain, 119, 1597–1615.PubMedCrossRefGoogle Scholar
  54. Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E., & Robbins, T. W. (1995). Visuo-spatial short term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalohippocampectomy in man. Neuropsychologia, 33, 1–24.PubMedCrossRefGoogle Scholar
  55. Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processes within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95, 7721–7726.CrossRefGoogle Scholar
  56. Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345.PubMedCrossRefGoogle Scholar
  57. Petrides, M. (1994). Frontal lobes and working memory: Evidence from investigations of the effects of cortical excisions in nonhuman primates. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 59–82). Amsterdam: Elsevier.Google Scholar
  58. Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 85–96). New York: New York Academy of Sciences.Google Scholar
  59. Petrides, M., Alivisatos, B., Evans, A. C., & Meyer, E. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Sciences, 90, 878–882.CrossRefGoogle Scholar
  60. Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 20, 249–262.PubMedCrossRefGoogle Scholar
  61. Postle, B. R., Berger, J. S., & D’Esposito, M. (1999). Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proceedings of the National Academy of Sciences, 96, 12950–12964.CrossRefGoogle Scholar
  62. Postle, B. R., Stern, C. E., Rosen, B. R., & Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. NeuroImage, 11, 409–423.PubMedCrossRefGoogle Scholar
  63. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.PubMedCrossRefGoogle Scholar
  64. Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbitt, P. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive function and cognitive ageing. Journal of the International Neuropsychological Society, 4, 474–490.PubMedCrossRefGoogle Scholar
  65. Rushworth, M. F. S., Nixon, P. D., Eacott, M. J., & Passingham, R. E. (1997). Ventral prefrontal cortex is not essential for working memory. Journal of Neuroscience, 17, 4829–4838.PubMedGoogle Scholar
  66. Rushworth, M. F. S., & Owen, A. M. (1998). The functional organization of the lateral frontal cortex: Conjecture or conjuncture in the electrophysiology literature. Trends in Cognitive Sciences, 2, 46–53.PubMedCrossRefGoogle Scholar
  67. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9, 216–226.PubMedCrossRefGoogle Scholar
  68. Salmon, E., Van der Linden, M., Collette, F., Delfiore, G., Maquet, P., Degueldre, C., Luxen, A., & Franck, G. (1996). Regional brain activity during working memory tasks. Brain, 119, 1617–1625.PubMedCrossRefGoogle Scholar
  69. Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E., & Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system. NeuroImage, 3, 79–88.PubMedCrossRefGoogle Scholar
  70. Smith, E., & Jonides, J. J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedCrossRefGoogle Scholar
  71. Smith, E., Jonides, J. J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6, 11–20.PubMedCrossRefGoogle Scholar
  72. Smith, E., Jonides, J. J., Koeppe, R. A., Awh, E., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus object working memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337–356.PubMedCrossRefGoogle Scholar
  73. Stern, C. E., Owen, A. M., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during non-spatial visual working memory processing: Evidence from functional magnetic resonance imaging. NeuroImage, 11, 392–399.PubMedCrossRefGoogle Scholar
  74. Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., & Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75, 454–468.PubMedGoogle Scholar
  75. Van der Linden, M., Collette, F., Salmon, E., Delfiore, G., Degueldre, C., Luxen, A., & Franck, G. (1999). The neural correlates of updating of information in verbal working memory. Memory, 7, 549–560.PubMedCrossRefGoogle Scholar
  76. Wilson, F. A. W., Scalaidhe, S. P. O., & Goldman-Rakic, P. S. (1993). Dissociations of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1958.PubMedCrossRefGoogle Scholar
  77. Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). Determining the number of statistically significant areas of activation in subtracted activation studies from PET. Journal of Cerebral Blood Flow & Metabolism, 12, 900–918.CrossRefGoogle Scholar
  78. Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  • Adrian M. Owen
    • 1
    • 2
    Email author
  • Andy C. H. Lee
    • 1
    • 2
    • 3
  • Emma J. Williams
    • 1
    • 2
    • 4
  1. 1.MRC Cognition and Brain Sciences UnitCambridgeEngland
  2. 2.University of CambridgeCambridgeEngland
  3. 3.Department of Experimental PsychologyCambridgeEngland
  4. 4.Wolfson Brain Imaging CentreCambridgeEngland

Personalised recommendations