Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Psychonomic Bulletin & Review
  3. Article

A hierarchical model for estimating response time distributions

  • Theoretical and Review Articles
  • Published: 21 September 2012
  • Volume 12, pages 195–223, (2005)
  • Cite this article
Download PDF
Psychonomic Bulletin & Review Aims and scope Submit manuscript
A hierarchical model for estimating response time distributions
Download PDF
  • Jeffrey N. Rouder1,
  • Jun Lu1,
  • Paul Speckman1,
  • DongChu Sun1 &
  • …
  • Yi Jiang1 
  • 2485 Accesses

  • 140 Citations

  • Explore all metrics

Abstract

We present a statistical model for inference with response time (RT) distributions. The model has the following features. First, it provides a means of estimating the shape, scale, and location (shift) of RT distributions. Second, it is hierarchical and models between-subjects and within-subjects variability simultaneously. Third, inference with the model is Bayesian and provides a principled and efficient means of pooling information across disparate data from different individuals. Because the model efficiently pools information across individuals, it is particularly well suited for those common cases in which the researcher collects a limited number of observations from several participants. Monte Carlo simulations reveal that the hierarchical Bayesian model provides more accurate estimates than several popular competitors do. We illustrate the model by providing an analysis of the symbolic distance effect in which participants can more quickly ascertain the relationship between nonadjacent digits than that between adjacent digits.

Article PDF

Download to read the full article text

Similar content being viewed by others

rtmpt: An R package for fitting response-time extended multinomial processing tree models

Article 06 May 2020

Hierarchical Hidden Markov Models for Response Time Data

Article 26 March 2020

The Seven-parameter Diffusion Model: an Implementation in Stan for Bayesian Analyses

Article Open access 28 August 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Andrews, S., &Heathcote, A. (2001). Distinguishing common and task-specific processes in word identification: A matter of some moment.Journal of Experimental Psychology: Learning, Memory, & Cognition,27, 514–544.

    Article  Google Scholar 

  • Ashby, F. G., Maddox, W. T., &Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model.Psychological Science,5, 144–151.

    Article  Google Scholar 

  • Ashby, F. G., Tien, J.-Y., &Balakrishnan, J. D. (1993). Response time distributions in memory scanning.Journal of Mathematical Psychology,37, 526–555.

    Article  Google Scholar 

  • Ashby, F. G., &Townsend, J. T. (1980). Decomposing the reaction time distribution: Pure insertion and selective influences revisited.Journal of Mathematical Psychology,21, 93–123.

    Article  Google Scholar 

  • Atkinson, R. C., Holmgren, J. E., &Juola, J. F. (1969). Processing time as influenced by the number of elements in a visual display.Perception & Psychophysics,6, 321–326.

    Article  Google Scholar 

  • Balota, D. A., &Chumbley, J. I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage.Journal of Experimental Psychology: Human Perception & Performance,10, 340–357.

    Article  Google Scholar 

  • Balota, D. A., &Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General,128, 32–55.

    Article  Google Scholar 

  • Batchelder, W. H., &Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling.Psychonomic Bulletin & Review,6, 57–86.

    Article  Google Scholar 

  • Brown, S., &Heathcote, A. (2003). Averaging learning curves across and within participants.Behavior Research Methods, Instruments, & Computers,35, 11–21.

    Article  Google Scholar 

  • Busemeyer, J. R., &Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.Psychological Review,100, 432–459.

    Article  PubMed  Google Scholar 

  • Cheng, R. C. H., &Amin, N. A. K. (1983). Estimating parameters in continuous univariate distributions with a shifted origin.Journal of the Royal Statistical Society: Series B,45, 394–403.

    Google Scholar 

  • Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research.Journal of Verbal Learning & Verbal Behavior,12, 335–359.

    Article  Google Scholar 

  • Colonius, H. (1995). The instance theory of automaticity: Why the Weibull?Psychological Review,102, 744–750.

    Article  Google Scholar 

  • Cousineau, D., Goodman, V. W., &Shiffrin, R. M. (2002). Extending statistics of extremes to distributions varying in position and scale and the implications for race models.Journal of Mathematical Psychology,46, 431–454.

    Article  Google Scholar 

  • Curran, T. C., &Hintzman, D. G. (1995). Violations of the independence assumption in process dissociation.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 531–547.

    Article  Google Scholar 

  • Dey, D., Ghosh, S., &Mallick, B. (2000).Generalized linear models: A Bayesian perspective. New York: Dekker.

    Google Scholar 

  • Dolan, C. V., van der Maas, H. L. J., &Molenaar, P. C. M. (2002). A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring.Behavior Research Methods, Instruments, & Computers,34, 304–323.

    Article  Google Scholar 

  • Dzhafarov, E. N. (1992). The structure of simple reaction time to stepfunction signals.Journal of Mathematical Psychology,36, 235–268.

    Article  Google Scholar 

  • Edwards, W. (1965). Optimal strategies for seeking information: Models for statistics, choice reaction times, and human information processing.Journal of Mathematical Psychology,2, 312–329.

    Article  Google Scholar 

  • Edwards, W., Lindman, H., &Savage, L. J. (1963). Bayesian statistical inference for psychological research.Psychological Review,70, 193–242.

    Article  Google Scholar 

  • Estes, W. K. (1956). The problem of inference from curves based on grouped data.Psychological Bulletin,53, 134–140.

    Article  PubMed  Google Scholar 

  • Fox, J.-P., &Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling.Psychometrika,66, 271–288.

    Article  Google Scholar 

  • Gelfand, A., &Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities.Journal of the American Statistical Association,85, 398–409.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., &Rubin, D. B. (1995).Bayesian data analysis. London: Chapman & Hall.

    Google Scholar 

  • Green, D. M., Smith, A. F., &von Gierke, S. M. (1983). Choice reaction time with a random foreperiod.Perception & Psychophysics,34, 195–208.

    Article  Google Scholar 

  • Haider H., &Frensch, P. A. (2002). Why aggregated learning follows the power law of practice when individual learning does not: Comment on Rickard (1997, 1999), Delaney et al. (1998), and Palmeri (1999).Journal of Experimental Psychology: Learning, Memory, & Cognition,28, 392–406.

    Article  Google Scholar 

  • Hasher, L., &Zacks, R. T. (1979). Automatic and effortful processes in memory.Journal of Experimental Psychology: General,108, 356–388.

    Article  Google Scholar 

  • Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data.Behavior Research Methods, Instruments, & Computers,28, 427–445.

    Article  Google Scholar 

  • Heathcote, A., Brown, S., &Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice.Psychonomic Bulletin & Review,7, 185–207.

    Article  Google Scholar 

  • Heathcote, A., Brown, S., &Mewhort, D. J. K. (2002). Quantile maximum likelihood estimation of response time distributions.Psychonomic Bulletin & Review,9, 394–401.

    Article  Google Scholar 

  • Heathcote, A., Popiel, S. J., &Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task.Psychological Bulletin,109, 340–347.

    Article  Google Scholar 

  • Hockley, W. E. (1984). Analysis of reaction time distributions in the study of cognitive processes.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 598–615.

    Article  Google Scholar 

  • Hogg, R. V., &Craig, A. T. (1978).Introduction to mathematical statistics. New York: Macmillan.

    Google Scholar 

  • Hohle, R. H. (1965). Inferred components of reaction time as a function of foreperiod duration.Journal of Experimental Psychology,69, 382–386.

    Article  PubMed  Google Scholar 

  • Hsu, Y. F. (1999).Two studies on simple reaction times: I. On the psychophysics of the generalized Pieron’s law. II. On estimating minimum detection times using the time estimation paradigm. Unpublished doctoral dissertation, University of California, Irvine.

    Google Scholar 

  • Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory.Journal of Memory & Language,30, 513–541.

    Article  Google Scholar 

  • Jiang, Y. (2002).Statistical approaches to forming group RT distributions. Unpublished master’s thesis, University of Missouri, Columbia.

    Google Scholar 

  • Jiang, Y., Rouder, J. N., &Speckman, P. L. (2004). A note on the sampling properties of the Vincentizing (quantile averaging) procedure.Journal of Mathematical Psychology,48, 186–195.

    Article  Google Scholar 

  • Johnson, N. L., Kotz, S., &Balakrishnan, N. (1994).Continuous univariate distributions (2nd ed., Vol. 2). New York: Wiley.

    Google Scholar 

  • Kass, R., &Raftery, A. (1995). Bayes factors.Journal of the American Statistical Association,90, 773–795.

    Article  Google Scholar 

  • Kosslyn, S. M. (1975). Information representation in visual images.Cognitive Psychology,7, 341–370.

    Article  Google Scholar 

  • Kreft, I. G. G., &de Leeuw, J. (1998).Introducing multilevel modeling. London: Sage.

    Google Scholar 

  • Lee, P. M. (1997).Bayesian statistics: An introduction. New York: Wiley.

    Google Scholar 

  • Lehmann, E. L. (1991).Theory of point estimation. Pacific Grove, CA: Wadsworth & Brooks.

    Google Scholar 

  • Link, S. W. (1975). The relative judgement theory of two choice response time.Journal of Mathematical Psychology,12, 114–135.

    Article  Google Scholar 

  • Link, S. W. (1990). Modeling imageless thought: The relative judgment theory of numerical comparisons.Journal of Mathematical Psychology,34, 2–41.

    Article  Google Scholar 

  • Logan, G. D. (1988). Toward an instance theory of automatization.Psychological Review,95, 492–527.

    Article  Google Scholar 

  • Logan, G. D. (1992). Shapes of reaction time distributions and shapes of learning curves: A test of the instance theory of automaticity.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 883–914.

    Article  Google Scholar 

  • Lu, J. (2004).Bayesian hierarchical models and applications in psychological research. Unpublished doctoral dissertation, University of Missouri, Columbia.

    Google Scholar 

  • Lu, J., Sun, D., Speckman, P. L., & Rouder, J. N. (2005).Hierarchical models for practice-effects in response time. Manuscript submitted for publication.

  • Luce, R. D. (1959).Individual choice behavior. New York: Wiley.

    Google Scholar 

  • Luce, R. D. (1986).Response times. New York: Oxford University Press.

    Google Scholar 

  • Masson, M. E. J., &Loftus, G. R. (2003). Using confidence intervals for graphically based data interpretation.Canadian Journal of Experimental Psychology,57, 203–220.

    PubMed  Google Scholar 

  • McClelland, J. L., &Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings.Psychological Review,88, 375–407.

    Article  Google Scholar 

  • Meng, X., &Wong, W. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration.Statistica Sinica,6, 831–860.

    Google Scholar 

  • Moyer, R. S. (1973). Comparing objects in memory: Evidence suggesting an internal psychophysics.Perception & Psychophysics,13, 1080–1084.

    Article  Google Scholar 

  • Moyer, R. S., &Landauer, T. K. (1967). Time required for judgements of numerical inequality.Nature,215, 1519–1520.

    Article  PubMed  Google Scholar 

  • Myung, I. J. (2003). Tutorial on maximum likelihood estimation.Journal of Mathematical Psychology,47, 90–100.

    Article  Google Scholar 

  • Myung, I. J., Kim, C., &Pitt, M. A. (2002). Toward an explanation of the power law artifact: Insights from response surface analysis.Memory & Cognition,28, 832–840.

    Article  Google Scholar 

  • Myung, I. J., &Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian approach.Psychonomic Bulletin & Review,4, 79–95.

    Article  Google Scholar 

  • Nelder, J. A., &Mead, R. (1965). A simplex method for function minimization.Computer Journal,7, 308–313.

    Google Scholar 

  • Peruggia, M., Van Zandt, T., &Chen, M. (2002). Was it a car or a cat I saw? An analysis of response times for word recognition. In C. Gatsonis, R. E. Kass, A. Carriquiry, A. Gelman, D. Higdon, D. K. Pauler, & I. Verdinelli (Eds.),Case studies in Bayesian statistics (Vol. 6, pp. 319–334). New York: Springer-Verlag.

    Google Scholar 

  • Phillips, L. D., &Edwards, W. (1966). Conservatism in a simple probability inference task.Journal of Experimental Psychology,72, 346–354.

    Article  PubMed  Google Scholar 

  • Pitt, M. A., Myung, I. J., &Zhang, S. (2002). Toward a method of selecting among computational models of cognition.Psychological Review,109, 472–491.

    Article  PubMed  Google Scholar 

  • Poltrock, S. E. (1989). A random walk model of digit comparison.Journal of Mathematical Psychology,33, 131–162.

    Article  Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.

    Article  Google Scholar 

  • Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.Psychological Bulletin,86, 446–461.

    Article  PubMed  Google Scholar 

  • Ratcliff, R., &Rouder, J. N. (1998). Modeling response times for decisions between two choices.Psychological Science,9, 347–356.

    Article  Google Scholar 

  • Ratcliff, R., &Rouder, J. N. (2000). A diffusion model analysis of letter masking.Journal of Experimental Psychology: Human Perception & Performance,26, 127–140.

    Article  Google Scholar 

  • Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts and the automatization of cognitive skills.Journal of Experimental Psychology: General,126, 288–311.

    Article  Google Scholar 

  • Riefer, D. M., &Batchelder, W. H. (1988). Multinomial modeling and the measure of cognitive processes.Psychological Review,95, 318–339.

    Article  Google Scholar 

  • Rouder, J. N. (2000). Assessing the roles of change discrimination and luminance integration: Evidence for a hybrid race model of perceptual decision making in luminance discrimination.Journal of Experimental Psychology: Human Perception & Performance,26, 359–378.

    Article  Google Scholar 

  • Rouder, J. N. (2001). Testing evidence accrual models by manipulating stimulus onset.Journal of Mathematical Psychology,45, 334–354.

    Article  PubMed  Google Scholar 

  • Rouder, J. N. (2004). Modeling the effects of choice-set size on the processing of letters and words.Psychological Review,111, 80–93.

    Article  PubMed  Google Scholar 

  • Rouder, J. N., &Batchelder, W. H. (1998). Multinomial models for measuring storage and retrieval processes in paired-associate learning. In C. Dowling, F. Roberts, & P. Theuns (Eds.),Recent progress in mathematical psychology (pp. 195–225). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Rouder, J. N., Lu, J., Sun, D., Speckman, P. L., & Morey, R. D. (2003, November).A statistical model of skill acquisition. Poster presented at the 20th Annual Meeting of the Psychonomic Society, Vancouver.

  • Rouder, J. N., Ratcliff, R., &McKoon, G. M. (2000). A neural network model of priming in object recognition.Psychological Science,11, 13–19.

    Article  PubMed  Google Scholar 

  • Rouder, J. N., &Speckman, P. L. (2004). An evaluation of the Vincentizing method of forming group-level response time distributions.Psychonomic Bulletin & Review,11, 419–427.

    Article  Google Scholar 

  • Rouder, J. N., Sun, D., Speckman, P. L., Lu, J., &Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions.Psychometrika,68, 589–606.

    Article  Google Scholar 

  • Schneider, W., &Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention.Psychological Review,84, 1–66.

    Article  Google Scholar 

  • Schwarz, W. (2001). The ex-Wald distribution as a descriptive model of response times.Behavior Research Methods, Instruments, & Computers,33, 457–469.

    Article  Google Scholar 

  • Sheu, C.-F., &O’Curry, S. L. (1998). Simulation-based Bayesian inference using BUGS.Behavior Research Methods, Instruments, & Computers,30, 232–237.

    Article  Google Scholar 

  • Smith, D. G., &Mewhort, D. J. K. (1998). The distribution of latencies constrains theories of decision time: A test of the random-walk model using numeric comparison.Australian Journal of Psychology,50, 149–156.

    Article  Google Scholar 

  • Speckman, P. L., &Rouder, J. N. (2004). A comment on Heathcote, Brown, and Mewhort’s QMLE method for response time distributions.Psychonomic Bulletin & Review,11, 574–576.

    Article  Google Scholar 

  • Spieler, D. H., Balota, D. A., &Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type.Journal of Experimental Psychology: Human Perception & Performance,22, 461–479.

    Article  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory. Science,153, 652–654.

    Article  PubMed  Google Scholar 

  • Tanner, M. A. (1993).Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions. Berlin: Springer-Verlag.

    Google Scholar 

  • Theeuwes, J. (1992). Perceptual selectivity for color and form.Perception & Psychophysics,51, 599–606.

    Article  Google Scholar 

  • Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets.Journal of Experimental Psychology: Human Perception & Performance,20, 799–806.

    Article  Google Scholar 

  • Thomas, E. A. C., &Ross, B. (1980). On appropriate procedures for combining probability distributions within the same family.Journal of Mathematical Psychology,21, 136–152.

    Article  Google Scholar 

  • Townsend, J. T., &Ashby, F. G. (1983).The stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Townsend, J. T., &Nozawa, G. (1995). On the spatio-temporal properties of elementary perception: An investigation on parallel, serial, and coactive theories.Journal of Mathematical Psychology,39, 321–359.

    Article  Google Scholar 

  • Treisman, A. M., &Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology,12, 97–136.

    Article  PubMed  Google Scholar 

  • Tversky, A., &Kahneman, D. (1990). Judgements under uncertainty: Heuristics and biases. In P. K. Moser (Ed.),Rationality in action: Contemporary approaches (pp. 171–188). New York: Cambridge University Press.

    Google Scholar 

  • Ulrich, R., &Miller, J. (1994). Effects of truncation of reaction time analysis.Journal of Experimental Psychology: General,123, 34–80.

    Article  Google Scholar 

  • Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin & Review,7, 424–465.

    Article  Google Scholar 

  • Van Zandt, T., Colonius, H., &Proctor, R. W. (2000). A comparison of two response time models applied to perceptual matching.Psychonomic Bulletin & Review,7, 208–256.

    Article  Google Scholar 

  • Vickers, D. (1980). Discrimination. In A. Welford (Ed.),Reaction times (pp. 25–72). London: Academic Press.

    Google Scholar 

  • Vincent, S. B. (1912). The function of vibrissae in the behavior of the white rat.Behavioral Monographs,1(Whole No. 5).

  • Wang, X. H., Bradlow, E. T., &Wainer, H. (2002). A general Bayesian model for testlets: Theory and applications.Applied Psychological Measurement,26, 109–128.

    Article  Google Scholar 

  • Wickens, T. D., &Keppel, G. (1983). On the choice of design and test statistic in the analysis of experiments with sampled materials.Journal of Verbal Learning & Verbal Behavior,22, 296–309.

    Article  Google Scholar 

  • Yellott, J. I. (1969). Probability learning with noncontingent success.Journal of Mathematical Psychology,6, 541–575.

    Article  Google Scholar 

  • Yellott, J. I. (1971). Correction for fast guessing and the speed-accuracy tradeoff in choice reaction time.Journal of Mathematical Psychology,8, 159–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, 65211, Columbia, MO

    Jeffrey N. Rouder, Jun Lu, Paul Speckman, DongChu Sun & Yi Jiang

Authors
  1. Jeffrey N. Rouder
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jun Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Paul Speckman
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. DongChu Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yi Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jeffrey N. Rouder.

Additional information

This research was supported by National Science Foundation Grant SES-0095919 to J.N.R., D.S., and P.S., by University of Missouri Research Board Grant 00-77 to J.N.R., and by National Science Foundation Grant DMS-9972598 to D.S. and P.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouder, J.N., Lu, J., Speckman, P. et al. A hierarchical model for estimating response time distributions. Psychonomic Bulletin & Review 12, 195–223 (2005). https://doi.org/10.3758/BF03257252

Download citation

  • Received: 02 July 2003

  • Accepted: 24 May 2004

  • Published: 21 September 2012

  • Issue Date: April 2005

  • DOI: https://doi.org/10.3758/BF03257252

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Root Mean Square Error
  • Drift Rate
  • Parent Distribution
  • Mathematical Psychology
  • Response Time Distribution
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

152.53.107.23

Not affiliated

Springer Nature

© 2025 Springer Nature