Psychonomic Bulletin & Review

, Volume 7, Issue 3, pp 480–489 | Cite as

Viewpoint-invariant and viewpoint-dependent object recognition in dissociable neural subsystems

  • E. Darcy Burgund
  • Chad J. Marsolek
Brief Reports


Participants viewed objects in the central visual field and then named either same or different depth-orientation views of these objects presented briefly in the left or the right visual field. The different-orientation views contained either the same or a different set of parts and relations. Viewpoint-dependent priming was observed when test views were presented directly to the right hemisphere (RH), but not when test views were presented directly to the left hemisphere (LH). Moreover, this pattern of results did not depend on whether the same or a different set of parts and relations could be recovered from the different-orientation views. Results support the theory that a specific subsystem operates more effectively than an abstract subsystem in the RH and stores objects in a manner that produces viewpoint-dependent effects, whereas an abstract subsystem operates more effectively than a specific subsystem in the LH and does not store objects in a viewpoint-dependent manner.


Left Cerebral Hemisphere Object Recognition Familiar Object Right Cerebral Hemisphere Left Visual Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ballard, D. H. (1986). Cortical connections and parallel processing: Structure and function.Behavioral & Brain Sciences,9, 67–120.CrossRefGoogle Scholar
  2. Bartram, D. J. (1976). Levels of coding in picture-picture comparison tasks.Memory & Cognition,4, 593–602.CrossRefGoogle Scholar
  3. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding.Psychological Review,94, 115–147.PubMedCrossRefGoogle Scholar
  4. Biederman, I., &Cooper, E. E. (1991). Priming contour-deleted images: Evidence for intermediate representations in visual object recognition.Cognitive Psychology,23, 393–419.PubMedCrossRefGoogle Scholar
  5. Biederman, I., &Gerhardstein, P. C. (1993). Recognizing depthrotated objects: Evidence and conditions for three-dimensional viewpoint invariance.Journal of Experimental Psychology: Human Perception & Performance,19, 1162–1182.CrossRefGoogle Scholar
  6. Biederman, I., &Gerhardstein, P. C. (1995). Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bülthoff (1995).Journal of Experimental Psychology: Human Perception & Performance,21, 1506–1514.CrossRefGoogle Scholar
  7. Bülthoff, H. H., &Edelman, S. (1992). Psychophysical support for a two-dimensional view interpolation theory of object recognition.Proceedings of the National Academy of Sciences,89, 60–64.CrossRefGoogle Scholar
  8. Burgund, E. D., &Marsolek, C. J. (1997). Letter-case-specific priming in the right cerebral hemisphere with a form-specific perceptual identification task.Brain & Cognition,35, 239–258.CrossRefGoogle Scholar
  9. Burgund, E. D., &Marsolek, C. J. (1999a).Separable mechanisms for initial storage of unfamiliar three-dimensional objects. Manuscript submitted for publication.Google Scholar
  10. Burgund, E. D., &Marsolek, C. J. (1999b).When planar reorientations do and do not affect priming for unfamiliar objects. Manuscript submitted for publication.Google Scholar
  11. Churchland, P. S., &Sejnowski, T. J. (1992).The computational brain. Cambridge, MA: MIT Press.Google Scholar
  12. Cohen, J., MacWhinney, B., Flatt, M., &Provost, J. (1993). PsyScope: An interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh Computers.Behavioral Research Methods, Instruments, & Computers,25, 257–271.CrossRefGoogle Scholar
  13. Cohen, N. J., &Eichenbaum, H. (1993).Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press.Google Scholar
  14. Cooper, L. A., Schacter, D. L., Ballesteros, S., &Moore, C. (1992). Priming and recognition of transformed three-dimensional objects: Effects of size and reflection.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 43–57.CrossRefGoogle Scholar
  15. Edelman, S. (1998). Representation is representation of similarities.Behavioral & Brain Sciences,21, 449–498.Google Scholar
  16. Edelman, S., &Bülthoff, H. H. (1992). Orientation dependence in the recognition of familiar and novel views of three-dimensional objects.Vision Research,32, 2385–2400.PubMedCrossRefGoogle Scholar
  17. Ellis, R., &Allport, D. A. (1986). Multiple levels of representation for visual objects: A behavioural study. In A. G. Cohen & J. R. Thomas (Eds.),Artificial intelligence and its applications (pp. 245–257). New York: Wiley.Google Scholar
  18. Ellis, R., Allport, D. A., Humphreys, G. W., &Collis, J. (1989). Varieties of object constancy.Quarterly Journal of Experimental Psychology,41A, 775–796.Google Scholar
  19. Farah, M. J. (1990).Visual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, MA: MIT Press.Google Scholar
  20. Farah, M. J. (1991). Patterns of co-occurrence among the associative agnosias: Implications for visual object representation.Cognitive Neuropsychology,8, 1–19.CrossRefGoogle Scholar
  21. Farah, M. J. (1992). Is an object an object an object? Cognitive and neuropsychological investigations of domain specificity in visual object recognition.Current Directions in Psychological Science,1, 164–169.CrossRefGoogle Scholar
  22. Gauthier, I., &Tarr, M. J. (1997). Becoming a “greeble” expert: Exploring mechanisms for face recognition.Vision Research,37, 1673–1682.PubMedCrossRefGoogle Scholar
  23. Hayward, W. G. (1998). Effects of outline in object recognition.Journal of Experimental Psychology: Human Perception & Performance,24, 427–440.CrossRefGoogle Scholar
  24. Hayward, W. G., &Tarr, M. J. (1997). Testing conditions for viewpoint invariance in object recognition.Journal of Experimental Psychology: Human Perception & Performance,23, 1511–1521.CrossRefGoogle Scholar
  25. Hinton, G. E., McClelland, J. L., &Rumelhart, D. E. (1986). Distributed representations. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations (pp. 77–109). Cambridge, MA: MIT Press.Google Scholar
  26. Hummel, J. E., &Biederman, I. (1992). Dynamic binding in a neural network for shape recognition.Psychological Review,99, 480–517.PubMedCrossRefGoogle Scholar
  27. Hummel, J. E., &Stankiewicz, B. J. (1996). Categorical relations in shape perception.Spatial Vision,10, 201–236.PubMedCrossRefGoogle Scholar
  28. Hummel, J. E., &Stankiewicz, B. J. (1998). Two roles for attention in shape perception: A structural description model for visual scrutiny.Visual Cognition,5, 49–79.CrossRefGoogle Scholar
  29. Humphrey, G. K., &Jolicoeur, P. (1993). An examination of the effects of axis foreshortening, monocular depth cues, and visual field on object identification.Quarterly Journal of Experimental Psychology,46A, 137–159.Google Scholar
  30. Humphrey, G. K., &Khan, S. C. (1992). Recognizing novel views of three-dimensional objects.Canadian Journal of Psychology,46, 170–190.PubMedCrossRefGoogle Scholar
  31. Humphreys, G. W., &Riddoch, M. J. (1984). Routes to object constancy: Implications from neurological impairments of object constancy.Quarterly Journal of Experimental Psychology,36A, 385–415.Google Scholar
  32. Jolicoeur, P. (1990). Identification of disoriented objects: A dualsystems theory.Mind & Language,5, 387–410.CrossRefGoogle Scholar
  33. Koenderink, J. J. (1987). An internal representation for solid shape based on the topological properties of the apparent contour. In W. Richards & S. Ullman (Eds.),Image understanding 1985–86 (pp. 257–285). Norwood, NJ: Ablex.Google Scholar
  34. Lawson, R., &Humphreys, G. W. (1996). View specificity in object processing: Evidence from picture matching.Journal of Experimental Psychology: Human Perception & Performance,22, 395–416.CrossRefGoogle Scholar
  35. Lawson, R., &Humphreys, G. W. (1998). View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects.Perception & Psychophysics,60, 1052–1066.CrossRefGoogle Scholar
  36. Logothetis, N. K., &Sheinberg, D. L. (1996). Visual object recognition.Annual Review of Neuroscience,19, 577–621.PubMedCrossRefGoogle Scholar
  37. Marr, D. (1982).Vision. San Francisco: Freeman.Google Scholar
  38. Marsolek, C. J. (1995). Abstract-visual-form representations in the left cerebral hemisphere.Journal of Experimental Psychology: Human Perception & Performance,21, 375–386.CrossRefGoogle Scholar
  39. Marsolek, C. J. (1999). Dissociable neural subsystems underlie abstract and specific object recognition.Psychological Science,10, 111–118.CrossRefGoogle Scholar
  40. Marsolek, C. J., &Burgund, E. D. (1997). Computational analyses and hemispheric asymmetries in visual-form recognition. In S. Christman (Ed.),Cerebral asymmetries in sensory and perceptual processing (pp. 125–158). Amsterdam: Elsevier.CrossRefGoogle Scholar
  41. Marsolek, C. J., &Hudson, T. E. (1999). Task and stimulus demands influence letter-case specific priming in the right cerebral hemisphere.Laterality,4, 127–147.PubMedCrossRefGoogle Scholar
  42. Marsolek, C. J., Schacter, D. L., &Nicholas, C. D. (1996). Formspecific visual priming for new associations in the right cerebral hemisphere.Memory & Cognition,24, 539–556.CrossRefGoogle Scholar
  43. McClelland, J. L., McNaughton, B. L., &O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory.Psychological Review,102, 419–457.PubMedCrossRefGoogle Scholar
  44. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory.Neuropsychologia,9, 97–113.PubMedCrossRefGoogle Scholar
  45. Palmer, S., Rosch, E., &Chase, P. (1981). Canonical perspective and the perception of objects. In J. [B.] Long & A. [D.] Baddeley (Eds.),Attention and performance IX (pp. 135–151). Hillsdale, NJ: Erlbaum.Google Scholar
  46. Poggio, T., &Edelman, S. (1990). A network that learns to recognize three-dimensional objects.Nature,343, 263–266.PubMedCrossRefGoogle Scholar
  47. Poggio, T. A., &Hurlbert, A. (1994). Observations on cortical mechanisms for object recognition and learning. In C. Koch & J. L. Davis (Eds.),Large-scale neuronal theories of the brain (pp. 153–182). Cambridge, MA: MIT Press.Google Scholar
  48. Rock, I., &DiVita, J. (1987). A case of viewer-centered object perception.Cognitive Psychology,19, 280–293.PubMedCrossRefGoogle Scholar
  49. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans.Psychological Review,99, 195–231.PubMedCrossRefGoogle Scholar
  50. Srinivas, K. (1993). Perceptual specificity in nonverbal priming.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 582–602.CrossRefGoogle Scholar
  51. Srinivas, K. (1995). Representation of rotated objects in explicit and implicit memory.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 1019–1036.CrossRefGoogle Scholar
  52. Tanaka, J. W., &Sengco, J. A. (1997). Features and their configuration in face recognition.Memory & Cognition,25, 583–592.CrossRefGoogle Scholar
  53. Tanaka, K. (1993). Neuronal mechanisms of object recognition.Science,262, 685–688.PubMedCrossRefGoogle Scholar
  54. Tarr, M. J. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects.Psychonomic Bulletin & Review,2, 55–82.CrossRefGoogle Scholar
  55. Tarr, M. J., &Bülthoff, H. H. (1995). Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993).Journal of Experimental Psychology: Human Perception & Performance,21, 1494–1505.CrossRefGoogle Scholar
  56. Tarr, M. J., Bülthoff, H. H., Zabinski, M., &Blanz, V. (1997). To what extent do unique parts influence recognition across changes in viewpoint?Psychological Science,8, 282–289.CrossRefGoogle Scholar
  57. Ullman, S. (1989). Aligning pictorial descriptions: An approach to object recognition.Cognition,32, 193–254.PubMedCrossRefGoogle Scholar
  58. Ullman, S. (1996).High-level vision: Object recognition and visual cognition. Cambridge, MA: MIT Press.Google Scholar
  59. Verfaillie, K., &Boutsen, L. (1995). A corpus of 714 full-color images of depth-rotated objects.Perception & Psychophysics,57, 925–961.CrossRefGoogle Scholar
  60. Wagemans, J., Gool, L., &Lamote, C. (1996). The visual system’s measurement of invariants need not itself be invariant.Psychological Science,7, 232–236.CrossRefGoogle Scholar
  61. Warrington, E. K., &Taylor, A. M. (1978). Two categorical stages of object recognition.Perception,7, 695–705.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MinnesotaMinneapolis

Personalised recommendations