Ashby, F. G., Tein, J.-Y., &Balakrishnan, J. D. (1993). Response time distributions in memory scanning.Journal of Mathematical Psychology,37, 526–555.
Google Scholar
Balota, D. A., &Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General,128, 32–55.
Google Scholar
Bickel, P. J., &Doksum, K. A. (1977).Mathematical statistics. San Francisco: Holden-Day.
Google Scholar
Blanco, M. J., &Alvarez, A. A. (1994). Psychometric intelligence and visual focused attention: Relationships in nonsearch tasks.Intelligence,18, 77–106.
Google Scholar
Blough, D. S. (1988). Quantitative relations between visual search speed and target-distractor similarity.Perception & Psychophysics,43, 57–71.
Google Scholar
Bloxom, B. (1984). Estimating response time hazard functions: An exposition and extension.Journal of Mathematical Psychology,28, 401–420.
Google Scholar
Bloxom, B. (1985). A constrained spline estimator of a hazard function.Psychometrika,50, 301–321.
Google Scholar
Burbeck, S. L., &Luce, R. D. (1982). Evidence from auditory simple reaction times for both change and level detectors.Perception & Psychophysics,32, 117–133.
Google Scholar
Chechile, R. A. (1998). Reexamining the goodness-of-fit problem for interval-scale scores.Behavior Research Methods, Instruments, & Computers,30, 227–231.
Google Scholar
Colonius, H. (1995). The instance theory of automaticity: Why the Weibull?Psychological Review,102, 744–750.
Google Scholar
Cousineau, D., &Larochelle, S. (1997). PASTIS: A program for curve and distribution analyses.Behavior Research Methods, Instruments, & Computers,29, 542–548.
Google Scholar
Dawson, M. R. W. (1988). Fitting the ex-Gaussian equation to reaction time distributions.Behavior Research Methods, Instruments, & Computers,20, 54–57.
Google Scholar
Devroye, L. (1987).A course in density estimation. Boston: Birkhäuser.
Google Scholar
Emerson, P. L. (1970). Simple reaction time with Markovian evolution of Gaussian discriminal processes.Psychometrika,35, 99–109.
Google Scholar
Feller, W. (1968).An introduction to probability theory and its applications (Vol. 1). New York: Wiley.
Google Scholar
Gallant, A. R. (1987).Nonlinear statistical models. New York: Wiley.
Google Scholar
Golden, R. M. (1999). Statistical tests for comparing possibly misspecified and non-nested models.Journal of Mathematical Psychology,44, 153–170.
Google Scholar
Green, D. M., &Luce, R. D. (1971). Detection of auditory signals presented at random times: III.Perception & Psychophysics,9, 257–268.
Google Scholar
Green, D. M., &Smith, A. F. (1982). Detection of auditory signals occurring at random times: Intensity and duration.Perception & Psychophysics,31, 117–127.
Google Scholar
Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data.Behavior Research Methods, Instruments, & Computers,28, 427–445.
Google Scholar
Heathcote, A., Popiel, S. J., &Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task.Psychological Bulletin,109, 340–347.
Google Scholar
Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 598–615.
Google Scholar
Hockley, W. E., &Murdock, B. (1987). A decision model for accuracy and response latency in recognition memory.Psychological Review,94, 341–358.
Google Scholar
Hohle, R. H. (1965). Inferred components of reaction times as a function of foreperiod duration.Journal of Experimental Psychology,69, 382–386.
PubMed
Google Scholar
Juhel, J. (1993). Should we take the shape of reaction time distributions into account when studying the relationship between RT and psychometric intelligence?Personality & Individual Differences,15, 357–360.
Google Scholar
Knuth, D. E. (1981).Seminumerical algorithms. Reading, MA: Addison-Wesley.
Google Scholar
Leth-Steenson, C., King Elbaz, Z., &Douglas, V. I. (2000). Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach.Acta Psychologica,104, 167–190.
Google Scholar
Logan, G. D. (1988). Toward an instance theory of automatization.Psychological Review,95, 492–527.
Google Scholar
Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of the instance theory of automaticity.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 883–914.
Google Scholar
Logan, G. D. (1995). The Weibull distribution, the power law, and the instance theory of automaticity.Psychological Review,102, 751–756.
Google Scholar
Luce, R. D. (1986).Response times: Their role in inferring elementary mental organization. New York: Oxford University Press.
Google Scholar
Madden, D., Gottlob, L., Denny, L., Turkington, T., Provenzale, J., Hawk, T., &Coleman, R. (1999). Aging and recognition memory: Changes in regional cerebral blood flow associated with components of reaction time distributions.Journal of Cognitive Neuroscience,11, 511–520.
PubMed
Google Scholar
McClelland, J. (1979). On the time relations of mental processes: An examination of systems of processes in cascade.Psychological Review,86, 287–330.
Google Scholar
McElree, B. (1998). Attended and non-attended states in working memory: Accessing categorized structures.Journal of Memory & Language,37, 225–252.
Google Scholar
McElree, B., &Dosher, B. A. (1993). Serial retrieval processes in the recovery of order information.Journal of Experimental Psychology: General,122, 291–315.
Google Scholar
McGill, W. J. (1963). Stochastic latency mechanisms. In R. D. Luce & R. R. Bush (Eds.),Handbook of mathematical psychology (Vol. 1, pp. 309–360). New York: Wiley.
Google Scholar
Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals.Cognitive Psychology,14, 247–279.
PubMed
Google Scholar
Myung, I. J. (1999). The importance of complexity in model selection.Journal of Mathematical Psychology,44, 190–204.
Google Scholar
Nelder, J. A., &Mead, R. (1965). A simplex method for function minimization.Computer Journal,7, 308–313.
Google Scholar
Nosofsky, R. M., &Palmeri, T. J. (1997). Comparing exemplarretrieval and decision-bound models of speeded perceptual classification.Perception & Psychophysics,59, 1027–1048.
Google Scholar
Parzen, E. (1962). On estimation of a probability density function and mode.Annals of Mathematical Statistics,33, 1065–1076.
Google Scholar
Pike, R. (1973). Response latency models for signal detection.Psychological Review,80, 53–68.
PubMed
Google Scholar
Plourde, C., &Besner, D. (1997). On the locus of the word frequency effect in visual word recognition.Canadian Journal of Experimental Psychology,51, 181–194.
Google Scholar
Possamai, C. (1991). A responding hand effect in a simple-RT precueing experiment: Evidence for a late locus of facilitation.Acta Psychologica,77, 47–63.
PubMed
Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., &Flannery, B. P. (1992).Numerical recipes in FORTRAN: The art of scientific computing (2nd ed.). New York: Cambridge University Press.
Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.
Google Scholar
Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.Psychological Bulletin,86, 446–461.
PubMed
Google Scholar
Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling the accumulation of partial information.Psychological Review,95, 238–255.
PubMed
Google Scholar
Ratcliff, R. &Murdock, B. B., Jr. (1976). Retrieval processes in recognition memory.Psychological Review,83, 190–214.
Google Scholar
Read, T. R. C., &Cressie, N. A. C. (1988).Goodness-of-fit statistics for discrete multivariate data. New York: Springer-Verlag.
Google Scholar
Reber, P. J., Alvarez, P., &Squire, L. R. (1997). Reaction time distributions across normal forgetting: Searching for markers of memory.Learning & Memory,4, 284–290.
Google Scholar
Rohrer, D., &Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall.Memory & Cognition,22, 511–524.
Google Scholar
Rudd, M. E. (1996). A neural timing model of visual threshold.Journal of Mathematical Psychology,40, 1–29.
Google Scholar
Silverman, B. W. (1986).Density estimation for statistics and data analysis. London: Chapman & Hall.
Google Scholar
Smith, D., &Mewhort, D. (1998). The distribution of latencies constrains theories of decision time: A test of the random-walk model using numeric comparison.Australian Journal of Psychology,50, 149–156.
Google Scholar
Smith, P. L., &Vickers, D. (1988). The accumulator model of twochoice discrimination.Journal of Mathematical Psychology,32, 135–168.
Google Scholar
Spieler, D. H., Balota, D. A., &Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type.Journal of Experimental Psychology: Human Perception & Performance,22, 461–479.
Google Scholar
Strayer, D. L., &Kramer, A. F. (1994). Strategies and automaticity: I. Basic findings and conceptual framework.Journal of Experimental Psychology: Learning, Memory, & Cognition,20, 318–341.
Google Scholar
Tapia, R. A., &Thompson, J. R. (1978).Nonparametric probability density estimation. Baltimore: Johns Hopkins University Press.
Google Scholar
Tolhurst, D. J. (1975). Reaction times in the detection of gratings by human observers: A probabilistic mechanism.Vision Research,15, 1143–1149.
PubMed
Google Scholar
Townsend, J. T. (1990). Truth and consequences of ordinal differences in statistical distributions: Toward a theory of hierarchical inference.Psychological Bulletin,108, 551–567.
PubMed
Google Scholar
Townsend, J. T., &Ashby, F. G. (1983).Stochastic modeling of elementary psychological processes. New York: Cambridge University Press.
Google Scholar
Van Zandt, T., Colonius, H., &Proctor, R. W. (2000). A comparison of two response time models applied to perceptual matching.Psychonomic Bulletin & Review,7, 208–256.
Google Scholar
Van Zandt, T., &Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-process models, parameter variability, and mixtures.Psychonomic Bulletin & Review,2, 20–54.
Google Scholar
Wald, A. (1947).Sequential analysis. New York: Wiley.
Google Scholar
Wickens, T. D. (1982).Models for behavior: Stochastic processes in psychology. San Francisco: Freeman.
Google Scholar
Wixted, J. T., &Rohrer, D. (1993). Proactive interference and the dynamics of free recall.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 1024–1039.
Google Scholar