Skip to main content

Advertisement

SpringerLink
  • Log in
Recent models and findings in visual backward masking: A comparison, review, and update
Download PDF
Download PDF
  • Published: December 2000

Recent models and findings in visual backward masking: A comparison, review, and update

  • Bruno G. Breitmeyer1 &
  • Haluk Ogmen1 

Perception & Psychophysics volume 62, pages 1572–1595 (2000)Cite this article

  • 3988 Accesses

  • 360 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Visual backward masking not only is an empirically rich and theoretically interesting phenomenon but also has found increasing application as a powerful methodological tool in studies of visual information processing and as a useful instrument for investigating visual function in a variety of specific subject populations. Since the dual-channel, sustained-transient approach to visual masking was introduced about two decades ago, several new models of backward masking and metacontrast have been proposed as alternative approaches to visual masking. In this article, we outline, review, and evaluate three such approaches: an extension of the dual-channel approach as realized in the neural network model of retino-cortical dynamics (Ogmen, 1993), the perceptual retouch theory (Bachmann, 1984, 1994), and the boundary contour system (Francis, 1997; Grossberg & Mingolla, 1985b). Recent psychophysical and electrophysiological findings relevant to backward masking are reviewed and, whenever possible, are related to the aforementioned models. Besides noting the positive aspects of these models, we also list their problems and suggest changes that may improve them and experiments that can empirically test them.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Alais, D., Blake, R., &Lee, S. H. (1998). Visual features that vary together over time group together over space.Nature Neuroscience,1, 160–164.

    Article  PubMed  Google Scholar 

  • Alpern, M. (1953). Metacontrast.Journal of the Optical Society of America,43, 648–657.

    Article  PubMed  Google Scholar 

  • Alpern, M. (1965). Rod-cone independence in the after-flash effect.Journal of Physiology,176, 462–472.

    PubMed  Google Scholar 

  • Andreassi, J. L., De Simone, J. J., &Mellers, B. W. (1975). Amplitude changes in the visual evoked potential with backward masking.Electroencephalography & Clinical Neurophysiology,41, 387–398.

    Article  Google Scholar 

  • Arrington, K. F. (1994). The temporal dynamics of brightness fillingin.Vision Research,34, 3371–3387.

    Article  PubMed  Google Scholar 

  • Azizi, S., Ogmen, H., &Jansen, B. H. (1996). A unified analysis of alpha rhythms, fast synchronized oscillations, and flash evoked potentials.Neural Networks,9, 223–242.

    Article  Google Scholar 

  • Bachmann, T. (1984). The process of perceptual retouch: Nonspecific afferent activation dynamics in explaining visual masking.Perception, & Psychophysics,35, 69–84.

    Article  Google Scholar 

  • Bachmann, T. (1988). Time course of the subjective contrast enhancement for a second stimulus in successively paired above-threshold transient forms: Perceptual retouch instead of forward masking.Vision Research,28, 1255–1261.

    Article  PubMed  Google Scholar 

  • Bachmann, T. (1994).Psychophysiology of visual masking: The fine structure of conscious experience. Commack, NY: Nova Science.

    Google Scholar 

  • Bachmann, T. (1997). Visibility of brief images: The dual-process approach.Consciousness & Cognition,6, 491–518.

    Article  Google Scholar 

  • Bashinski, H. S., &Bacharach, V. R. (1980). Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations.Perception & Psychophysics,28, 241–248.

    Article  Google Scholar 

  • Békésy, G. von (1969). Mach- and Hering-type lateral inhibition in vision.Vision Research,9, 1483–1499.

    Google Scholar 

  • Benardete, E. A., Kaplan, E., &Knight, B. W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M cells are.Visual Neuroscience,8, 483–486.

    Article  PubMed  Google Scholar 

  • Berson, D. M., &Mcilwain, J. T. (1982). Retinal Y-cell activation of deep-layer cells in superior colliculus of the cat.Journal of Neurophysiology,47, 700–714.

    PubMed  Google Scholar 

  • Bischof, W. F., &Di Lollo, V. (1995). Motion and metacontrast with simultaneous onset of stimuli.Journal of the Optical Society of America A,12, 1623–1636.

    Article  Google Scholar 

  • Bowen, R. W., &Wilson, H. R. (1994). A two-process analysis of pattern masking.Vision Research,34, 645–657.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G. (1975). Predictions of visual backward masking from considerations of the spatiotemporal frequency response.Perception,,4, 297–304.

    Article  Google Scholar 

  • Breitmeyer, B. G. (1978a). Disinhibition of metacontrast masking of Vernier acuity targets: Sustained channels inhibit transient channels.Vision Research,18, 1401–1405.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G. (1978b). Metacontrast masking as a function of mask energy.Bulletin of the Psychonomic Society,12, 50–52.

    Google Scholar 

  • Breitmeyer, B. G. (1980). Unmasking visual masking: A look at the “why” behind the veil of the “how.”Psychological Review,87, 52–69.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G. (1984).Visual masking: An integrative approach. New York: Oxford University Press.

    Google Scholar 

  • Breitmeyer, B. G. (1986). Eye movements in visual pattern perception. In E. C. Schwab & H. C. Nusbaum (Eds.),Pattern recognition by humans and machines: Vol. 2. Visual perception (pp. 65–86). New York: Academic Press.

    Google Scholar 

  • Breitmeyer, B. G. (1992). Parallel processing in human vision: History, review, and critique. In J. Brannan (Ed.),Applications of parallel processing in vision (pp. 37–78). Amsterdam: Elsevier.

    Google Scholar 

  • Breitmeyer, B., Battaglia, F., &Weber, C. (1976). U-shaped backward contour masking during stroboscopic motion.Journal of Experimental Psychology: Human Perception & Performance,2, 167–173.

    Article  Google Scholar 

  • Breitmeyer, B. G., &Breier, J. I. (1994). Effects of background color on reaction time to stimuli varying in size and contrast: Inferences about human transient channels.Vision Research,34, 1039–1045.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G., &Ganz, L. (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression and information processing.Psychological Review,83, 1–36.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G., &Kersey, M. (1981). Backward masking by pattern stimulus offset.Journal of Experimental Psychology: Human Perception & Performance,7, 972–977.

    Article  Google Scholar 

  • Breitmeyer, B. G., Love, R., &Wepman, B. (1974). Contour masking during stroboscopic motion and metacontrast.Vision Research,14, 1451–1456.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G., May, J. G., &Heller, S. S. (1991). Metacontrast reveals asymmetries at red-green isoluminance.Journal of the Optical Society of America A,8, 1324–1329.

    Article  Google Scholar 

  • Breitmeyer, B. G., Rudd, M., &Dunn, K. (1981). Metacontrast investigations of sustained-transient channel inhibitory interactions.Journal of Experimental Psychology: Human Perception & Performance,7, 770–779.

    Article  Google Scholar 

  • Breitmeyer, B. G., &Williams, M. C. (1990). Effects of isoluminantbackground color on metacontrast and stroboscopic motion: Interactions between sustained (P) and transient (M) channels.Vision Research,30, 1069–1075.

    Article  PubMed  Google Scholar 

  • Bridgeman, B. (1971). Metacontrast and lateral inhibition.Psychological Review,78, 528–539.

    Article  PubMed  Google Scholar 

  • Bridgeman, B., (1975). Correlates of metacontrast in single cells of the cat visual system.Vision Research,15, 91–99.

    Article  PubMed  Google Scholar 

  • Bridgeman, B. (1978). Distributed sensory coding applied to simulations of iconic storage and metacontrast.Bulletin of Mathematical Biology,40, 605–623.

    PubMed  Google Scholar 

  • Bridgeman, B. (1980). Temporal characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination.Brain Research,196, 347–364.

    Article  PubMed  Google Scholar 

  • Bridgeman, B. (1988). Visual evoked potentials: Concomitants of metacontrast in late components.Perception, & Psychophysics,43, 401–403.

    Article  Google Scholar 

  • Brussell, E. M., Stober, S. R. &Favreau, O. E. (1978). Contrast reversal in backward masking.Vision Research,18, 225–227.

    Article  PubMed  Google Scholar 

  • Burchard, S., &Lawson, R. B. (1973). A U-shaped detection function for backward masking of similar contours.Journal of Experimental Psychology,99, 35–41.

    Article  PubMed  Google Scholar 

  • Caputo, G. (1998). Texture brightness filling-in.Vision Research,38, 841–851.

    Article  PubMed  Google Scholar 

  • Chen, S., Bedell, H. E., &Ogmen, H. (1995). A target in real motion appears blurred in the absence of other proximal moving targets.Vision Research,35, 2315–2328.

    Article  PubMed  Google Scholar 

  • Cohen, M. A., &Grossberg, S. (1984). Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance.Perception, & Psychophysics,36, 428–456.

    Article  Google Scholar 

  • Coltheart, M. (1980). Iconic memory and visible persistence.Perception, & Psychophysics,27, 183–228.

    Article  Google Scholar 

  • Crawford, B. H. (1947). Visual adaptation in relation to brief conditioning stimuli.Proceedings of the Roval Society of London: Series B,134, 283–302.

    Article  Google Scholar 

  • Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis.Proceedings of the National Academy of Sciences,81, 4586–4590.

    Article  Google Scholar 

  • Crick, F., &Koch, C. (1995). Are we aware of neural activity in primary visual cortex?Nature,375, 121–123.

    Article  PubMed  Google Scholar 

  • Dakin, S. C, & Hess, R. F. (1997). The spatial mechanism mediating symmetry perception.Vision Research,37, 2915–2930.

    Article  PubMed  Google Scholar 

  • De Monasterio, F. M. (1978a). Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques.Journal of Neurophysiology,41, 1418–1434.

    PubMed  Google Scholar 

  • De Monasterio, F. M. (1978b). Properties of concentrically organized X and Y ganglion cells of macaque retina.Journal of Neurophysiology,41, 1394–1417.

    PubMed  Google Scholar 

  • De Monasterio, F. M., &Schein, S. J. (1980). Protan-like spectral sensitivity of foveal Y ganglion cells of the retina of macaque monkeys.Journal of Physiology,299, 385–396.

    PubMed  Google Scholar 

  • Dennett, D. C. (1991).Consciousness explained. Boston: Little, Brown.

    Google Scholar 

  • Desimone, R., Albright, T. D., Gross, C. G., &Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque.Journal of Neuroscience,4, 2051–2062.

    PubMed  Google Scholar 

  • Deyoe, E. A., &Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex.Trends in Neurosciences,11, 219–226.

    Article  PubMed  Google Scholar 

  • Di Lollo, V., &Bischof, W. F. (1995). Inverse-intensity effect in duration of visible persistence.Psychological Bulletin,118, 223–237.

    Article  PubMed  Google Scholar 

  • Di Lollo, V., Bischof, W. F., &Dixon, P. (1993). Stimulus-onset asynchrony is not necessary for motion perception or metacontrast masking.Psychological Science,4, 260–263.

    Article  Google Scholar 

  • Di Russo, F., &Spinelli, D. (1999). Electrophysiological evidence for an early attentional mechanism in visual processing in humans.Vision Research,39, 2975–2985.

    Article  PubMed  Google Scholar 

  • Drasdo, N. (1980). Cortical potentials evoked by pattern presentation in the foveal region. In C. Barber (Ed.),Evoked potentials (pp. 167–174). Baltimore: University Park Press.

    Google Scholar 

  • Dreher, B., Fukuda, Y., &Rodieck, R. W. (1976). Identification. classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates.Journal of Physiology,258, 433–452.

    PubMed  Google Scholar 

  • Duncan, J. (1985). Two techniques for investigating perception without awareness.Perception, & Psychophysics,38, 296–298.

    Article  Google Scholar 

  • Duysens, J., Orban, G. A., Cremieux, J., &Maes, H. (1985). Visual cortical correlates of visible persistence.Vision Research,25, 171–178.

    Article  PubMed  Google Scholar 

  • Edwards, S. B., Ginsburgh, C. L., Henkel C. K., &Stein, B. E. (1979). Sources of subcortical projections to the superior colliculus in the cat.Journal of Comparative Neurology,184, 309–330.

    Article  PubMed  Google Scholar 

  • Edwards, V. T., Hogben, J. H., Clark, C. D., &Pratt, C. (1996). Effects of a red background on magnocellular functioning in average and specifically disabled readers.Vision Research,36, 1037–1045.

    Article  PubMed  Google Scholar 

  • Elliott, M. A., &Mueller, H. J. (1998). Synchronous information presented in 40-Hz flicker enhances visual feature binding.Psychological Science,9, 277–283.

    Article  Google Scholar 

  • Enns, J. T., &Di Lollo, V. (1997). Object substitution: A new form of masking in unattended visual locations.Psychological Science,8, 135–139.

    Article  Google Scholar 

  • Fahle, M., &Koch, C. (1995). Spatial displacement, not temporal asynchrony, destroys figurai binding.Vision Research,35, 491–494.

    Article  PubMed  Google Scholar 

  • Fehrer, E., &Smith, E. (1962). Effects of luminance ratio on masking.Perceptual & Motor Skills,14, 243–253.

    Article  Google Scholar 

  • Flaherty, T. B., &Matteson, H. H. (1971). Comparison of two measures of metacontrast.Journal of the Optical Society of America,61, 828–830.

    Article  PubMed  Google Scholar 

  • Foley, J. M. &Chen.C.-C. (1997). Analysis of the effect of pattern adaptation on pattern pedestal effects: A two-process model.Vision Research,37, 2779–2788.

    Article  PubMed  Google Scholar 

  • Foster, D. H. (1976). Rod-cone interaction in the after-flash effect.Vision Research,16, 393–396.

    Article  PubMed  Google Scholar 

  • Foster, D. H. (1978). Action of red-sensitive colour mechanism on blue-sensitive colour mechanism in visual masking.Optical Acta,25, 1001–1004.

    Google Scholar 

  • Foster, D. H. (1979). Interactions between blue- and red-sensitive colour mechanisms in metacontrast masking.Vision Research,19, 921–931.

    Article  PubMed  Google Scholar 

  • Foster, D. H., &Mason, R. J. (1977). Interaction between rod and cone systems in dichoptic visual masking.Neuroscience Letters,4, 39–42.

    Article  PubMed  Google Scholar 

  • Francis.G. (1996a). Cortical dynamics of lateral inhibition: Visual persistence and IS1.Perception & Psychophysics,58, 1103–1109.

    Article  Google Scholar 

  • Francis, G. (1996b). Cortical dynamics of visual persistence and temporal integration.Perception & Psychophysics,58, 1203–1212.

    Article  Google Scholar 

  • Francis, G. (1997). Cortical dynamics of lateral inhibition: Metacontrast masking.Psychological Review,104, 572–594.

    Article  PubMed  Google Scholar 

  • Francis, G. (1999). Spatial frequency and visual persistence: Cortical reset.Spatial Vision,12, 31–50.

    Article  PubMed  Google Scholar 

  • Francis, G., &Grossberg, S. (1996a). Cortical dynamics of boundary segmentation and reset: Persistence, afterimages, and residual traces.Perception,25, 543–567.

    Article  PubMed  Google Scholar 

  • Francis, G., &Grossberg.S. (1996b). Cortical dynamics of form and motion integration: Persistence, apparent motion, and illusory contours.Vision Research,36. 149–174.

    Article  PubMed  Google Scholar 

  • Francis.G., Grossberg.S., &Mingolla, E. (1994). Cortical dynamics of feature binding and reset: Control of visual persistence.Vision Research,34, 1089–1104.

    Article  PubMed  Google Scholar 

  • Fries, P., Roelfsema, P. R., Engel, A. E., Koenig, P., &Singer, W. (1997). Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry.Proceedings of the National Academy of Sciences,94, 12669–12704.

    Article  Google Scholar 

  • Frizzi, J. T. (1979). Midbrain reticular stimulation and brightness detection.Vision Research,19, 123–130.

    Article  PubMed  Google Scholar 

  • Gerrits, H. J. M., &Timmerman.G. J. M. E. N. (1969). The filling-in process in patients with retinal scotoma.Vision Research.9, 439–442.

    Article  PubMed  Google Scholar 

  • Gerrits, H. J. M., &Vendrik.A. J. H. (1970). Simultaneous contrast, filling-in process and information processing in man’s visual system.Experimental Bruin Research,11, 411 - 430.

    Google Scholar 

  • Glass, R. A., &Sternheim, C. E. (1973). Visual sensitivity in the presence of alternating monochromatic fields of light.Vision Research,13, 689–699.

    Article  PubMed  Google Scholar 

  • Glennerster.A., &Parker.A. J. (1997). Computing stereo channels from masking data.Vision Research,37, 2143–2152.

    Article  PubMed  Google Scholar 

  • Green.M. F., Nuechterlein, H. H., &Breitmeyer, B. (1997). Backward masking performance in unaffected siblings of schizophrenic patients.Archives of General Psychiatry,54, 465–472.

    PubMed  Google Scholar 

  • Green, M. F., Nuechterlein, H. H., Breitmeyer, B., &Mintz, J. (1999). Backward masking performance in remitted, unmedicated schizophrenia: Suggestive evidence for aberrant cortical oscillations.American Journal of Psychiatry,156, 1367–1373.

    PubMed  Google Scholar 

  • Green, M. F. Nuechterlein.H. H., &Mintz, J. (1994a). Backward masking in schizophrenia and mania: I. Specifying a mechanism.Archives of General Psychiatry,51, 939–944.

    PubMed  Google Scholar 

  • Green, M. F., Nuechterlein, H. H., &Mintz.J. (1994b). Backward masking in schizophrenia and mania: II. Specifying the visual channels.Archives of General Psychiatry,51, 945–951.

    PubMed  Google Scholar 

  • Gross, C. G., Rocha-Miranda, C. E., &Bender, D. E. (1972). Visual properties of neurons in inferotemporal cortex of the macaque.Journal of Neurophysiology,35, 96- 111.

    PubMed  Google Scholar 

  • Grossberg, S. (1983). The quantized geometry of visual space: The coherent computation of depth, form, and lightness.Behavioral & Brain Sciences,6, 625–657.

    Article  Google Scholar 

  • Grossberg, S. (1994). 3-D vision and figure-ground separation by visual cortex.Perception & Psychophysics,55, 48–120.

    Article  Google Scholar 

  • Grossberg, S., &Mingolla, E. (1985a). Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading.Psychological Review,92, 173–211.

    Article  PubMed  Google Scholar 

  • Grossberg, S., &Mingolla, E. (1985b). Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations.Perception & Psychophysics,38, 141–171.

    Article  Google Scholar 

  • Grossberg, S., &Todorovic, D. (1988). Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena.Perception & Psychophysics,43, 241–277.

    Article  Google Scholar 

  • Growney, R. (1978). Metacontrast as a function of the spatial frequency composition of the target and mask.Vision Research,18, 1117–1123.

    Article  PubMed  Google Scholar 

  • Hartveit, E., Ramberg, S. I., &Heggelund, P. (1993). Brainstem modulation of spatial receptive field properties of single cells in the dorsal lateral geniculate nucleus of the cat.Journal of Neurophysiology,70, 1644–1655.

    PubMed  Google Scholar 

  • Hassler, R. (1978). Interaction of reticular activating system for vigilance and the truncothalamic and pallidal systems for directing awareness and attention under striatal control. In P. A. Buser & A. Rougeul-Buser (Eds.),Cerebral correlates of conscious experience (pp. 111–129). Amsterdam: North-Holland.

    Google Scholar 

  • Havig, P. R., Breitmeyer, B. G., & Brown, V. R. (1998, May).The effects of pre-cueing attention on metacontrast masking. Paper presented at the annual meeting of the Association for Research in Vision and Ophthalmology, Ft. Lauderdale, FL.

  • Heckenmueller, E. G., &Dember, W. N. (1965). Paradoxical brightening of a masked black disc.Psychonomic Science,3, 457–458.

    Google Scholar 

  • Hellige, J. B., Walsh, D. A., Lawrence, V. S., &Prasse, M. (1979). Figurai relationship effects and mechanisms of visual masking.Journal of Experimental Psychology: Human Perception & Performance,5, 88–100.

    Article  Google Scholar 

  • Hering, E. (1878).Zur Lehre vom Lichtsinn [On the theory of the sense of light]. Vienna: Gerald u. Soehne.

    Google Scholar 

  • Hicks, T. P., Lee, B. B., &Vidyasagar, T. R. (1983). The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings.Journal of Physiology,337. 183–200.

    PubMed  Google Scholar 

  • Hoffmann, K.-P., Stone, J., &Sherman, S. M. (1972). Relay of receptive field properties in the dorsal lateral geniculate nucleus of the cat.Journal of Neurophysiology,35, 518–531.

    PubMed  Google Scholar 

  • Holender, D. (1986). Semantic activation without conscious identification in dichoptic listening, parafoveal vision, and visual masking: A survey and appraisal.Behavioral & Brain Sciences,9, 1–66.

    Article  Google Scholar 

  • Hubel.D. H. (1988).Eye. brain, and vision. New York: Scientific American Library.

    Google Scholar 

  • Hubel.D. H., &Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat.Journal of Neurophysiology,28, 229–289.

    PubMed  Google Scholar 

  • Jeffreys, D. A., &Axford, J. G. (1972a). Source locations of pattern specific components of human visual evoked potentials: I. Components of striate cortical origin.Experimental Brain Research,16, 1–21.

    Google Scholar 

  • Jeffreys, D. A., &Axford, J. G. (1972b). Source locations of pattern specific components of human visual evoked potentials: II. Components of extrastriate cortical origin.Experimental Brain Research,16, 22–40.

    Google Scholar 

  • Jeffreys, D. A., &Musselwhite, M. J. (1986). A visual evoked potential study of metacontrast masking.Vision Research,26, 631–642.

    Article  PubMed  Google Scholar 

  • Kahneman, D. (1967). An onset-onset law for one case of apparent motion and metacontrast.Perception & Psychophysics,2, 577–584.

    Article  Google Scholar 

  • Kahneman, D. (1968). Method, findings, and theory in studies of visual masking.Psychological Bulletin,70, 404–425.

    Article  PubMed  Google Scholar 

  • Kihlstrom, J. F. (1987). The cognitive unconscious.Science,237, 1145–1152.

    Article  Google Scholar 

  • King, D. L., Hicks, H., &Brown, P. D. (1993). Context-produced increase in visibility.Psychological Research,55, 10–14.

    Article  PubMed  Google Scholar 

  • Kinsbourne, M., &Warrington, E. K. (1962a). The effect of an aftercoming random pattern of the perception of brief visual stimuli.Quarterly Journal of Experimental Psychology,14, 223–234.

    Article  Google Scholar 

  • Kinsbourne, M., &Warrington, E. K. (1962b). Further studies of visuai masking of brief visual stimuli by a random pattern.Quarterly Journal of Experimental Psychology,14, 235–245.

    Article  Google Scholar 

  • Kiper, D. C. **Gegenfurtner, K. R., &Movshon, A. (1996). Cortical oscillatory responses do not affect visual segmentation.Vision Research,36, 539–544.

    Article  PubMed  Google Scholar 

  • Klotz, W., &Neumann, O. (1999). Motor activation without conscious discrimination in metacontrast masking.Journal of Experimental Psychology: Human Perception & Performance,25, 976–992.

    Article  Google Scholar 

  • Klotz, W., &Wolff, P. (1995). The effect of a masked stimulus on the response to the masking stimulus.Psychological Research,58, 92–101.

    Article  PubMed  Google Scholar 

  • Koch, C., &Crick, F. (1994). Some further ideas regarding the neuronal basis of awareness. In C. Koch & J. L. Davis (Eds.),Large-scale neuronal theories of the brain (pp. 93–109). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kolers, P. (1962). Intensity and contour effects in visual masking.Vision Research,2, 277–294.

    Article  Google Scholar 

  • Kolers, P., &Rosner, B. S. (1960). On visual masking (metacontrast): Dichoptic observations.American Journal of Psychology,73, 2–21.

    Article  PubMed  Google Scholar 

  • Kovács, G., Vogels, R., &Orban, G. A. (1995). Cortical correlate of pattern backward masking.Proceedings of the National Academy of Sciences,92, 5587–5591.

    Article  Google Scholar 

  • Krueger, J. (1979). Responses to wavelength contrast in the afferent visual systems of the cat and rhesus monkey.Vision Research,19, 1351–1358.

    Article  Google Scholar 

  • Kruse, W., &Eckhorn, R. (1996). Inhibition of sustained ψ oscillations (35-80 Hz) by fast transient responses in cat visual cortex.Proceedings of the National Academy of Sciences,93, 6112–6117.

    Article  Google Scholar 

  • Kulikowski, J. J., &Tolhurst, D. J. (1973). Psychophysical evidence for sustained and transient detectors in human vision.Journal of Physiology,232, 149–162.

    PubMed  Google Scholar 

  • Kurylo, D. D. (1997). Time course of perceptual grouping.Perception & Psychophysics,59, 142–147.

    Article  Google Scholar 

  • Laberge, D. (1995).Attentional processing: The brain’s art of mindfulness. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Laberge, D., &Brown, V. (1989). Theory of attentional operations in shape identification.Psychological Review,96, 101 -124.

    Article  Google Scholar 

  • Lacassagne, D., Bedell, H. E., &Ogmen, H. (1995). Perception and discrimination of edge blur: Psychophysical and modeling analyses [Abstract].Investigative Ophthalmology & Visual Science,37, 5732.

    Google Scholar 

  • Lee, B. B., Martin, P. R., &Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina.Journal of Physiology,404, 323–347.

    PubMed  Google Scholar 

  • Lee, B. B., Martin, P. R., &Valberg, A. (1989a). Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli.Journal of Physiology,414, 245–263.

    PubMed  Google Scholar 

  • Lee, B. B., Martin, P. R., &Valberg, A. (1989b). Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque.Journal of Neuroscience,9, 1433–1442.

    PubMed  Google Scholar 

  • Lee, T., Mumford, D., &Schiller, P. (1995). Neuronal correlates of boundary and medial axis representations in primate visual cortex [Abstract].Investigative Ophthalmology & Visual Science,36, S477.

    Google Scholar 

  • Lennie, P. (1980). Parallel pathways in vision: A review.Vision Research,20, 561–594.

    Article  PubMed  Google Scholar 

  • Li, C.-Y., Pei, X., Zhow, Y., &Von Mitzlaff, H.-C. (1991). Role of the extensive area outside the X-cell receptive field in brightness information transmission.Vision Research,31, 1529–1540.

    Article  PubMed  Google Scholar 

  • Livingstone, M. (1996). Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex.Journal of Neurophysiology,75, 2467–2485.

    PubMed  Google Scholar 

  • Livingstone, M., &Hubel, D. (1984). Anatomy and physiology of a colour system in the primate visual cortex.Journal of Neuroscience,4, 309–356.

    PubMed  Google Scholar 

  • Livingstone, M., &Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception.Science,240, 740–749.

    Article  PubMed  Google Scholar 

  • Mach, E. (1865). Über die Wirkung der räumlichen Verteilung des Lichtreizes auf die Netzhaut.Wiener Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaft,52, 131–144.

    Google Scholar 

  • Mack, A., &Rock, I. (1998).Inattentional blindness. Cambridge, MA: MIT Press.

    Google Scholar 

  • MacKnik, S. L., &Livingstone, M. S. (1998). Neuronal correlates of visibility and invisibility in the primate visual system.Nature Neuroscience,1, 144–149.

    Article  PubMed  Google Scholar 

  • Maier, J., Dagnelie, G., Spekreijse, H., &Van Dijk, B. W. (1987). Principal components analysis for source localization of VEPs in man.Vision Research,21, 165–177.

    Article  Google Scholar 

  • Marcel, A. J. (1983). Conscious and unconscious perception: Experiments on visual masking and word recognition.Cognitive Psychology,15, 197–237.

    Article  PubMed  Google Scholar 

  • Marrocco, R. T., McClurkin, J. W., &Young, R. A. (1982). Spatial summation and conduction latency classification of cells of the lateral geniculate of macaques.Journal of Neuroscience,2, 1275–1291.

    PubMed  Google Scholar 

  • Matin, E. (1974). Saccadic suppression: A review and analysis.Psychological Bulletin,81, 899–917.

    Article  PubMed  Google Scholar 

  • Matin, E. (1975). The two-transient (masking) paradigm.Psychological Review,82, 451–461.

    Article  PubMed  Google Scholar 

  • Mattson, A. J., Levin, H. S., &Breitmeyer, B. G. (1994). Visual information processing after severe closed head injury: Effects of forward and backward masking.Journal of Neurology, Neurosurgery & Psychiatry,57, 818–824.

    Article  Google Scholar 

  • Maunsell, J. H. R. (1987). Physiological evidence for two visual subsystems. In L. M. Vaina (Ed.),Matters of intelligence: Conceptual structures in cognitive neuroscience (pp. 59–87). Dordrecht: Reidel.

    Google Scholar 

  • Maunsell, J. H. R., Ghose, G. M., Assad, J. A., McAdams, C. J., Boudreau, C. E., &Noerager, B. D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys.Visual Neuroscience,16, 1–14.

    Article  PubMed  Google Scholar 

  • Maunsell, J. H. R., &Gibson, J. R. (1992). Visual response latencies in striate cortex of the macaque monkey.Journal of Neurophvsiology,68, 1332–1344.

    Google Scholar 

  • Maunsell, J. H. R., &Schiller, P. H. (1984). Evidence for the segregation of parvo- and magnocellular channels in the visual cortex of macaque monkey.Neuroscience Abstracts,10, 520.

    Google Scholar 

  • May, J. G., Grannis, S. W., &Porter, R. J., Jr. (1980). The “lag effect” in dichoptic viewing.Brain & Language,11, 19–29.

    Article  Google Scholar 

  • McKee, S. P., Bravo, M. J., Taylor, D. G., &Legge.G. E. (1994). Stereo matching precedes dichoptic masking.Vision Research,34, 1047–1060.

    Article  PubMed  Google Scholar 

  • Merrit, R. D., &Balooh, D. W. (1984). The use of a backward masking paradigm to assess information-processing deficits among schizophrenics: A re-evaluation of Steronko and Woods.Journal of Nervous & Mental Diseases,172, 216–224.

    Article  Google Scholar 

  • Michaels, C. F., &Turvey, M. T. (1979). Central sources of visual masking: Indexing structures supporting seeing at a single, brief glance.Psychological Research,41, 1–61.

    Article  Google Scholar 

  • Michimata, C., Okubo, M., &Mugishima, Y. (1999). Effects of background color on the global and local processing of hierarchically organized stimuli.Journal of Cognitive Neuroscience,11, 1–8.

    Article  Google Scholar 

  • Mitzdorf, U., &Singer, W. (1979). Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials.Journal of Comparative Neurology,187, 71 -84.

    Article  PubMed  Google Scholar 

  • Moran, J., &Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science,229, 782–784.

    Article  PubMed  Google Scholar 

  • Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas VI, V2, and V4 in the presence of competing stimuli.Journal of Neurophysiology,70, 909–919.

    PubMed  Google Scholar 

  • Muise, J. G., Leblanc, R. S., Lavoie, M. E., &Arsenault, A. S. (1991). Two-stage model of visual backward masking: Sensory transmission and accrual of effective information as a function of target intensity and similarity.Perception & Psychophysics,50, 197–204.

    Article  Google Scholar 

  • Mussap, A. J., &Levi, D. M. (1997). Vernier acuity with plaid masks: The role of oriented filters in vernier acuity.Vision Research,37, 1325–1340.

    Article  PubMed  Google Scholar 

  • Neumann, O., &Klotz, W. (1994). Motor responses to nonreportable, masked stimuli: Where is the limit of direct parameter specification? In C. Umiltà & M. Moscovitch (Eds.),Attention and performance XV: Conscious and nonconscious information processing (pp. 123–150). Cambridge, MA: MIT Press, Bradford Books.

    Google Scholar 

  • Nowak, L. G., Munk, M. H. J., Girard, P., &Bullier, J. (1985). Visual latencies in areas V1 and V2 of the macaque monkey.Visual Neuroscience,12, 371–384.

    Article  Google Scholar 

  • Ogmen, H. (1993). A neural theory of retinocortical dynamics.Neural Networks,6, 245–273.

    Article  Google Scholar 

  • Paradiso, M. A., &Nakayama, K. (1991). Brightness perception and filling-in.Vision Research,31, 1221–1236.

    Article  PubMed  Google Scholar 

  • Petersen, S. E., Miezin, F. M., &Allman, J. M. (1988). Transient and sustained responses in four extrastriate visual areas of the owl monkey.Experimental Brain Research,70, 55–60.

    Google Scholar 

  • Posner, M. I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32, 3–25.

    Article  PubMed  Google Scholar 

  • Posner.M. I., &Petersen, S. E. (1990). The attention system of the human brain.Annual Review of Neuroscience,13, 25–42.

    Article  PubMed  Google Scholar 

  • Posner, M. I., &Rothbart, M. K. (1994). Constructing neuronal theories of mind. In C. Koch & J. L. Davis (Eds.),Large-scale neuronal theories of the brain (pp. 183–199). Cambridge, MA: MIT Press.

    Google Scholar 

  • Purcell, D. G., &Dember, W. N. (1968). The relation of phenomenal brightness reversal and re-reversal to backward masking and recovery.Perception & Psychophysics,3, 290–292.

    Article  Google Scholar 

  • Purcell, D. G., Stewart, A. L., &Brunner, R. L. (1974). Metacontrast target detection under light and dark adaptation.Bulletin of the Psychonomic Society,3. 199–201.

    Google Scholar 

  • Purpura, D. P. (1970). Operations and processes in thalamic and synaptically related neural subsystems. In F. O. Schmitt (Ed.),The neurosciences: Second study program (pp. 458–470). New York: Rockefeller University Press.

    Google Scholar 

  • Purpura, K., Tranchina, D., Kaplan, E., &Shapley.R. M. (1990). Light adaptation in primate retina: Analysis of changes in gain and dynamics of retinal ganglion cells.Visual Neuroscience,4. 75–93.

    Article  PubMed  Google Scholar 

  • Purushothaman, G., Ogmen.H., &Bedell, H. E. (1997). Spatially localized stimuli generate oscillatory metacontrast masking functions.Investigative Ophthalmology & Visual Science,38, S628.

    Google Scholar 

  • Purushothaman.G., Ogmen, H., &Bedell, H. E. (2000). Gammarange oscillations in backward masking functions and their putative neural correlates.Psychological Review,107, 556–577.

    Article  PubMed  Google Scholar 

  • Purushothaman, G., Ogmen, H., Chen, S., &Bedell, H. E. (1998). Motion deblurring in a neural network model of retino-cortical dynamics.Vision Research,38, 1827–1842.

    Article  PubMed  Google Scholar 

  • Ramachandran, V. S. (1990). Visual perception in people and machines. In A. Balke & T. Troscianko (Eds.),AI and the eve (pp. 21–77). New York: Wiley.

    Google Scholar 

  • Ramachandran, V. S., &Cobb, S. (1995). Visual attention modulates metacontrast masking.Nature,373, 66–68.

    Article  PubMed  Google Scholar 

  • Ratliff, F. (1965).Mach bands. San Francisco: Holden Day.

    Google Scholar 

  • Reeves, A. (1981). Metacontrast in hue substitution.Vision Research.21, 907–912.

    Article  PubMed  Google Scholar 

  • Rensink, R. A., &Enns.J. T. (1995). Preemption effects in visual search: Evidence for low level grouping.Psychological Review,102, 101–130.

    Article  PubMed  Google Scholar 

  • Rieke, F., Warland, D., De Ruyter Van Steveninck, R., &Bialek.W. (1997).Spikes: Exploring the neural code. Cambridge, MA: MIT Press.

    Google Scholar 

  • Roelfsema, P. R., Lamme, V. A. F., &Spekreijse, H. (1998). Objectbased attention in the primary visual cortex of the macaque monkey.Nature,395, 376–381.

    Article  PubMed  Google Scholar 

  • Rogowitz, B. (1983). Spatial/temporal interactions: Backward and forward metacontrast masking with sine-wave gratings.Vision Research,23, 1057–1073.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (1992). Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas.Philosophical Transactions of the Roval Society of London: Series B,335, 11–21.

    Article  Google Scholar 

  • Rolls, E. T., &Tovée, M. J. (1994). Processing speed in the cerebral cortex and the neurophysiology of visual masking.Proceedings of the Royal Society of London: Series B,257, 9–15.

    Article  Google Scholar 

  • Rolls, E. T., Tovée, M. J., &Panzeri, S. (1999). The neurophysiology of backward visual masking: Information analysis.Journal of Cognitive Neuroscience,11, 300–311.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., Tovée, M. J., Purcell, D. G., Stewart, A. L., &Azzopardi, P. (1994). The responses of neurons in the temporal cortex of primates, and face identification and detection.Experimental Brain Research,101, 473–484.

    Article  Google Scholar 

  • Rossi, A. F., &Paradiso, M. A. (1999). Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex.Journal of Neuroscience,19, 6145–6156.

    PubMed  Google Scholar 

  • Roth, E. C., &Hellige, J. B. (1998). Spatial processing and hemispheric asymmetry: Contributions of the transient/magnocellular visual system.Journal of Cognitive Neuroscience,10, 472–484.

    Article  PubMed  Google Scholar 

  • Saccuzzo, D. P., &Schubert, D. L. (1981). Backward masking as a measure of slow processing in schizophrenia spectrum disorders.Journal of Abnormal Psychology,90, 305–312.

    Article  PubMed  Google Scholar 

  • Sagi, D., &Julesz, B. (1985). Enhanced detection in the aperture of focal attention during simple discrimination tasks.Nature,321, 693–695.

    Article  Google Scholar 

  • Sato, T. (1988). Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque.Journal of Neurophysiology,60, 344–364.

    PubMed  Google Scholar 

  • Scheerer.E. (1973). Integration, interruption and processing rate in visual backward masking.Psychologische Forschung,36, 71–93.

    Article  PubMed  Google Scholar 

  • Schiller, P. H. (1965). Metacontrast interference as determined by a method of comparisons.Perceptual & Motor Skills,20, 279–285.

    Google Scholar 

  • Schiller, P. H. (1986). The central visual system.Vision Research,26, 1351–1386.

    Article  PubMed  Google Scholar 

  • Schiller, P. H., &Chorover, S. L. (1966). Metacontrast: Its relation to evoked potentials.Science,153, 1398–1400.

    Article  PubMed  Google Scholar 

  • Schiller, P. H., &Colby, C. L. (1983). The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast.Vision Research,23, 1631–1641.

    Article  PubMed  Google Scholar 

  • Schiller, P. H., &Lee, K. (1991). The role of primate extrastriate area V4 in vision.Science,251, 1251–1253.

    Article  PubMed  Google Scholar 

  • Schiller, P. H., &Malpeli.J. G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey.Journal of Neurophysiology,41, 788–797.

    PubMed  Google Scholar 

  • Schiller, P. H., &Smith, M. C. (1968). Monoptic and dichoptic metacontrast.Perception & Psychophysics,3, 237–239.

    Article  Google Scholar 

  • Schmolesky, M. T., Wang, Y., Hanes, D. G., Thompson, K. G., Leutgeb, S., Schall, J. D., &Leventhal, A. G. (1998). Signal timing across the macaque visual system.Journal of Neurophysiology,79, 3272–3278.

    PubMed  Google Scholar 

  • Schroeder, C. E., Tenke, C. E., Givre, J. C., Arezzo, J. C., &Vaughn, H. G., Jr. (1991). Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey.Vision Research,31, 1143–1157.

    Article  PubMed  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication.AT&T Bell Laboratories Technical Journal,27, 379–423.

    Google Scholar 

  • Shapley, R. (1992). Parallel retinocortical channels: X and Y and P and M. In J. Brannan (Ed.),Applications of parallel processing in vision (pp. 3–36). Amsterdam: North-Holland.

    Google Scholar 

  • Sheer, D. E. (1984). Focused arousal, 40 Hz EEG, and dysfunction. In T. Elbert, B. Rockstroh, W. Lutzenberger, & N. Birbaumer (Eds.),Self regulation of the brain and behavior (pp. 66–84). Berlin: Springer-Verlag.

    Google Scholar 

  • Shelley-Tremblay, J., &Mack, A. (1999). Metacontrast masking and attention.Psychological Science,10, 508–515.

    Article  Google Scholar 

  • Sherrick, M. F., &Dember, W. N. (1970). Visual backward masking and the area-detection relation.Psychonomic Science,19, 127–128.

    Google Scholar 

  • Singer.W. (1977). Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system.Physiological Reviews,57, 386–420.

    PubMed  Google Scholar 

  • Singer, W. (1979). Central-core control of visual cortex functions. In F. O. Schmitt & F. G. Worden (Eds.),The neurosciences: Fourth study program (pp. 1093–1110). Cambridge, MA: MIT Press.

    Google Scholar 

  • Singer, W. (1994). Putative functions of temporal correlations in neocortical processing. In C. Koch & J. L. Davis (Eds.),Large-scale neuronal theories of the brain (pp. 201–237). Cambridge, MA: MIT Press.

    Google Scholar 

  • Singer, W., &Bedworth, N. (1973). Inhibitory interaction between X and Y units in cat lateral geniculate nucleus.Brain Research,49, 291–307.

    Article  PubMed  Google Scholar 

  • Singer, W., &Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis.Annual Review of Neuroscience,18, 555–586.

    Article  PubMed  Google Scholar 

  • Singer, W., Tretter, F., &Cynader, M. (1975). Organization of cat striate cortex: A correlation of receptive-field properties with afferent and efferent connections.Journal of Neurophysiology,38, 1080–1098.

    PubMed  Google Scholar 

  • Singer, W., Tretter, F., &Cynader, M. (1976). The effect of reticular stimulation on spontaneous and evoked activity in the cat visual cortex.Brain Research,102, 71–90.

    Article  PubMed  Google Scholar 

  • Skottun, B. C., &Parke, L. A. (1999). The possible relationship between visual deficits and dyslexia: Examination of a critical assumption.Journal of Learning Disability,32, 2–5.

    Article  Google Scholar 

  • Slaghuis, W. L., &Bakker, V. J. (1995). Forward and backward visual masking of contour by light in positive- and negative-symptom schizophrenia.Journal of Abnormal Psychology,104, 41–54.

    Article  PubMed  Google Scholar 

  • Somers, D. C., Dale, A. M., Seiffert, A. E., &Tootell, R. B. H. (1999). Functional MRI reveals spatially specific attentional modulation in human primary visual cortex.Proceedings of the National Academy of Sciences,96, 1663–1668.

    Article  Google Scholar 

  • Sperling, G. (1963). A model for visual memory tasks.Human Factors,5, 19–31.

    PubMed  Google Scholar 

  • Sperling, G. (1965). Temporal and spatial visual masking: I. Masking by impulse flashes.Journal of the Optical Society of America,55, 541–559.

    Article  Google Scholar 

  • Steriade, M., &McCarley, R. W. (1990).Brainstem control of wakefulness and sleep. New York: Plenum.

    Google Scholar 

  • Stewart, A. L., &Purcell, D. G. (1974). Visual backward masking by a flash of light: A study of U-shaped detection functions.Journal of Experimental Psychology,103, 553–566.

    Article  PubMed  Google Scholar 

  • Stigler, R. (1910). Chronotopische Studien über den Umgebungskontrast [Chronometric studies of surround contrast].Pflügers Archivfür Gesamte Physiologie,135, 365–435.

    Article  Google Scholar 

  • Stone, J., &Dreher, B. (1973). Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex.Journal of Neurophysiology,36, 551 -567.

    PubMed  Google Scholar 

  • Stoper, A. E., &Mansfield, J. G. (1978). Metacontrast and paracontrast suppression of a contourless area.Vision Research,18, 1669–1674.

    Article  PubMed  Google Scholar 

  • Stromeyer, C. F., &Julesz, B. (1972). Spatial-frequency masking in vision: Critical bands and spread of masking.Journal of the Optical Society of America,62, 1221 -1232.

    Article  PubMed  Google Scholar 

  • Sugase, Y., Yamane, S., Ueno, S., &Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex.Nature,400, 869–873.

    Article  PubMed  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Delpuech, C., &Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in humans.Journal of Neuroscience,16, 4240–4249.

    PubMed  Google Scholar 

  • Thompson, K. G., &Schall, J. D. (1999). The detection of visual signals by macaque frontal eye field during masking.Nature Neuroscience,2, 283–288.

    Article  PubMed  Google Scholar 

  • Tolhurst, D. J. (1973). Separate channels for the analysis of the shape and movement of a moving visual stimulus.Journal of Physiology,231, 385–402.

    PubMed  Google Scholar 

  • Tsumoto, T., &Suzuki, D. A. (1978). Inhibitory and excitatory binocular convergence to visual cortex neurons of the cat.Brain Research,159, 85–97.

    Article  PubMed  Google Scholar 

  • Turvey, M. T. (1973). On peripheral and central processes in vision: Inferences from an information-processing analysis of masking with patterned stimuli.Psychological Review,80, 1–52.

    Article  PubMed  Google Scholar 

  • Tytla, M. E., &Steinbach.M. J. (1984). Metacontrast masking in amblyopia.Canadian Journal of Psychology,38, 369–385.

    Article  PubMed  Google Scholar 

  • Van Essen, D. C. (1985). Functional organization of primate visual cortex. In A. Peters & E. G. Jones (Eds.),Cerebral cortex (Vol. 3, pp. 259–329). New York: Plenum.

    Google Scholar 

  • Van Essen, D. C., Anderson, C. H., &Felleman, D. J. (1992). Information processing in the primate visual system: An integrated systems perspective.Science,225, 419–423.

    Article  Google Scholar 

  • Vaughn, H. G., Jr., &Silverstein, L. (1968). Metacontrast and evoked potentials: A reappraisal.Science,160, 207–208.

    Article  Google Scholar 

  • Von Der Heydt, R., Friedman, H. S., Zhou, H., Komatsu, H., Hanazawa, A., &Murakami, I. (1997). Neuronal responses in monkey VI and V2 unaffected by metacontrast [Abstract].Investigative Ophthalmology & Visual Science,38, S459.

    Google Scholar 

  • Watanabe, T., Sasaki, Y., Miyauchi, S., Putz, B., Fujimaki, N., Nielsen, M., Takino, R., &Miyakawa, S. (1998). Attentionregulated activity in human primary visual cortex.Journal of Neurophysiology,79, 2218–2221.

    PubMed  Google Scholar 

  • Weisstein, N. (1968). A Rashevsky-Landahl neural net: Simulation of metacontrast.Psychological Review,75, 494–521.

    Article  PubMed  Google Scholar 

  • Weisstein, N. (1971). W-shaped and U-shaped functions obtained for monoptic and dichoptic disk-disk masking.Perception & Psychophysics,9, 275–278.

    Article  Google Scholar 

  • Weisstein, N. (1972). Metacontrast. In D. Jameson & L. M. Hurvich (Eds.),Handbook of sensory physiology: Vol. 7/4. Visual psychophysics (pp. 233–272). New York: Springer-Verlag.

    Google Scholar 

  • Weisstein, N., Jurkens, T., &Onderisin, T. (1970). Effect of forcedchoice vs. magnitude-estimation measures on the waveform of metacontrast functions.Journal of the Optical Societv of America,60, 978–980.

    Article  Google Scholar 

  • Weisstein, N., Ozog, G., &Szoc, R. (1975). A comparison and elaboration of two models of metacontrast.Psychological Review,82, 325–343.

    Article  PubMed  Google Scholar 

  • Werner, H. (1935). Studies of contour: I. Qualitative analysis.American Journal of Psychology,47, 40–64.

    Article  Google Scholar 

  • Werner, H. (1940). Studies of contour strobostereoscopic phenomena.American Journal of Psychology,53, 418–422.

    Article  Google Scholar 

  • Westheimer, G., &Hauske, G. (1975). Temporal and spatial interference with Vernier acuity.Vision Research,15, 1137–1141.

    Article  PubMed  Google Scholar 

  • Wiesel, T. N., &Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey.Journal of Neurophysiology,29, 1115–1156.

    PubMed  Google Scholar 

  • Williams, M. C., Breitmeyer, B. G., Lovegrove, W. J., &Gutierrez, C. (1991). Metacontrast with masks varying in spatial frequency and wavelength.Vision Research,31, 2017–2023.

    Article  PubMed  Google Scholar 

  • Williams, M. [C], Lecluyse, K., &Bologna, N. (1990). Masking by light as a measure of visual integration time in normal and disabled readers.Clinical Vision Sciences,5, 335–343.

    Google Scholar 

  • Williams, M. [C], Molinet, K., &Lecluyse, K. (1989). Visual masking as a measure of temporal processing in normal and disabled readers.Clinical Vision Sciences,4, 137–144.

    Google Scholar 

  • Williams, M. C., &Weisstein, N. (1981). Spatial frequency response and perceived depth in the time-course of object superiority.Vision Research,21, 631–646.

    Article  PubMed  Google Scholar 

  • Wolf, J. M., Chun, M. M., &Friedman-Hill, S. R. (1995). Making use of texton gradients: Visual search and perceptual grouping exploit the same parallel processes in different ways. In T. V. Papathomas, C. Chubb, A. Gorea, & E. Kowler (Eds.),Early vision and beyond (pp. 189–197). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of Houston, 77204-5341, Houston, TX

    Bruno G. Breitmeyer & Haluk Ogmen

Authors
  1. Bruno G. Breitmeyer
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Haluk Ogmen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Bruno G. Breitmeyer.

Additional information

This work was supported in part by Grant R01-MH49892 from the National Institute of Mental Health. H.O. is in the Department of Electrical and Computer Engineering.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Breitmeyer, B.G., Ogmen, H. Recent models and findings in visual backward masking: A comparison, review, and update. Perception & Psychophysics 62, 1572–1595 (2000). https://doi.org/10.3758/BF03212157

Download citation

  • Received: 06 April 1999

  • Accepted: 08 February 2000

  • Issue Date: December 2000

  • DOI: https://doi.org/10.3758/BF03212157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Vision Research
  • Lateral Geniculate Nucleus
  • Visual Masking
  • Visible Persistence
  • Stimulus Onset Asyn
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 89.238.176.4

Not affiliated

Springer Nature

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.