Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrox & F. Caski (Eds.),Second International Symposium on Information Theory (p. 267). Budapest: Akademiai Kiado.
Google Scholar
Akaike, H. (1983). Information measures and model selection.Bulletin of the International Statistical Institute,50, 277–290.
Google Scholar
Allan, L. G. (1980). A note on measurement of contingency between two binary variables in judgment tasks.Bulletin of the Psychonomic Society,15, 147–149.
Google Scholar
Allan, L. G. (1993). Human contingency judgments: Rule based or associativity?Psychological Bulletin,114, 435–448.
Article
PubMed
Google Scholar
Anderson, J. R. (1990).The adaptive character of thought. Hillsdale, NJ: Erlbaum.
Google Scholar
Anderson, J. R., &Sheu, C.-F. (1995). Causal inferences as perceptual judgments.Memory & Cognition,23, 510–524.
Article
Google Scholar
Anderson, N. H. (1981).Foundations of information integration theory. New York: Academic Press.
Google Scholar
Ashby, F. G. (1992). Multidimensional models of categorization. In F. G. Ashby (Ed.),Multidimensional models of perception and cognition (pp. 449–483). Hillsdale, NJ: Erlbaum.
Google Scholar
Ashby, F. G., &Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli.Journal of Experimental Psychology: Learning, Memory, & Cognition,14, 33–53.
Article
Google Scholar
Ashby, F. G., &Townsend, J. T. (1986). Varieties of perceptual independence.Psychological Review,93, 154–179.
Article
PubMed
Google Scholar
Balakrishnan, N., &Cohen, A. C. (1991).Order statistics and inference: Estimation methods. New York: Academic Press.
Google Scholar
Bamber, D., &van Santen, J. P. H. (1985). How many parameters can a model have and still be testable?Journal of Mathematical Psychology,29, 443–473.
Article
Google Scholar
Berger, J. O. (1985).Statistical decision theory and Bayesian analysis (2nd ed.). New York: Springer-Verlag.
Google Scholar
Berger, J. O., &Perrichi, L. R. (1996). The intrinsic Bayes factor for model selection.Journal of the American Statistical Association,91, 109–122.
Article
Google Scholar
Bickel, P. J., &Doksum, K. A. (1977).Mathematical statistics. Oakland, CA: Holden-Day.
Google Scholar
Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions.Psychometrika,52, 345–370.
Article
Google Scholar
Bretthorst, G. L. (1989). Bayesian model selection: Examples relevant to NMR. In J. Skilling (Ed.),Maximum entropy and Bayesian methods (pp. 377–388). Amsterdam: Kluwer.
Google Scholar
Browne, M. W., &Cudeck, R. C. (1992). Alternative ways of assessing model fit.Sociological Methods & Research,21, 230–258.
Article
Google Scholar
Busemeyer, J. R., &Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.Psychological Review,100, 432–459.
Article
PubMed
Google Scholar
Carlin, B. P., &Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods.Journal of the Royal Statistical Society: Series B,3, 473–484.
Google Scholar
Chaitin, G. J. (1966). On the length of programs for computing binary sequences.Journal of the Association for Computing Machinery,13, 547–569.
Google Scholar
Collyer, C. E. (1985). Comparing strong and weak models by fitting them to computer-generated data.Perception & Psychophysics,38, 476–481.
Google Scholar
Cover, T. M., &Thomas, J. A. (1991).Elements of information theory. New York: Wiley.
Book
Google Scholar
Cryer, J. D. (1986).Time series analysis. Boston: PWS-Kent.
Google Scholar
Cudeck, R., &Henly, S. J. (1991). Model selection in covariance structures analysis and the “problem” of sample size: A clarification.Psychological Bulletin,109, 512–519.
Article
PubMed
Google Scholar
Cutting, J. E., Bruno, N., Brady, N. P., &Moore, C. (1992). Selectivity, scope, and simplicity of models: A lesson from fitting judgments of perceived depth.Journal of Experimental Psychology: General,121, 364–381.
Article
Google Scholar
De Bruijn, N. G. (1958).Asymptotic methods in analysis. Amsterdam: North-Holland.
Google Scholar
Gelfand, A. E., &Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations.Journal of the Royal Statistical Society: Series B,56, 501–514.
Google Scholar
Gelfand, A. E., &Smith, A. E. (1990). Sampling-based approaches to calculating marginal densities.Journal of the American Statistical Association,85, 398–409.
Article
Google Scholar
Geman, S., &Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.IEEE Transactions on Pattern Analysis & Machine Intelligence,6, 721–741.
Article
Google Scholar
Gillund, G., &Shiffrin, R. M. (1984). A retrieval model for both recognition and recall.Psychological Review,91, 1–67.
Article
PubMed
Google Scholar
Green, D. M., &Swets, J. A. (1966).Signal detection theory and psychophysics. New York: Wiley.
Google Scholar
Gregory, P. C., &Loredo, T. J. (1992). A new method for the detection of a periodic signal of unknown shape and period.Astrophysical Journal,398, 146–168.
Article
Google Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chain and their applications.Biometrika,57, 97–109.
Article
Google Scholar
Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model.Psychological Review,93, 411–428.
Article
Google Scholar
Hintzman, D. L. (1988). Judgments of frequency and recognition in a multiple-trace memory model.Psychological Review,84, 260–278.
Google Scholar
Jacobs, A. M., &Grainger, J. (1994). Models of visual word recognition: Sampling the state of the art.Journal of Experimental Psychology: Human Perception & Performance,20, 1311–1334.
Article
Google Scholar
Jaynes, E. T. (1957). Information theory and statistical mechanics.Physical Review,106, 620–630;108, 171–190.
Article
Google Scholar
Jeffreys, H. (1961).Theory of probability (3rd ed.). New York: Oxford University Press.
Google Scholar
Jeffreys, W. H., &Berger, J. O. (1992). Ockham’s razor and Bayesian analysis.American Scientist,80, 64–72.
Google Scholar
Kapur, J. N., &Kesavan, H. K. (1992).Entropy optimization principles with applications. New York: Academic Press.
Google Scholar
Kass, R. E., &Raftery, A. E. (1995). Bayes factors.Journal of the American Statistical Association,90, 773–795.
Article
Google Scholar
Kolmogorov, A. N. (1968). Logical basis for information theory and probability theory.IEEE Transactions on Information Theory,14, 662–664.
Article
Google Scholar
Kruschke, J. (1992). ALCOVE: An exemplar-based connectionist model of category learning.Psychological Review,99, 22–44.
Article
PubMed
Google Scholar
Kullback, S., &Leibler, R. A. (1951). On information and sufficiency.Annals of Mathematical Statistics,22, 79–86.
Article
Google Scholar
Le, N. D., &Raftery, A. E. (1996). Robust Bayesian model selection for autoregressive processes with additive outliers.Journal of the American Statistical Association,91, 123–131.
Article
Google Scholar
Li, M., &Vitanyi, P. (1993).An introduction to Kolmogorov complexity and its applications. New York: Springer-Verlag.
Google Scholar
MacKay, D. J. C. (1992).Bayesian methods for adaptive models. Unpublished doctoral dissertation, California Institute of Technology, Pasadena.
Maddox, W. T., &Ashby, F. G. (1993). Comparing decision bound and exemplar models of categorization.Perception & Psychophysics,53, 49–70.
Google Scholar
Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters.SIAM Journal of Applied Mathematics,11, 431–441.
Article
Google Scholar
Massaro, D. W., &Cohen, M. M. (1993). The paradigm and the fuzzy logical model of perception are alive and well.Journal of Experimental Psychology: General,122, 115–124.
Article
Google Scholar
Massaro, D. W., &Friedman, D. (1990). Models of integration given multiple sources of information.Psychological Review,97, 225–252.
Article
PubMed
Google Scholar
Medin, D. L., &Schaffer, M. M. (1978). Context theory of classification learning.Psychological Review,85, 207–238.
Article
Google Scholar
Metcalfe-Eich, J. (1982). A complete holographic associative recall model.Psychological Review,89, 627–661.
Article
Google Scholar
Murdock, B. B., Jr. (1982). A theory for the storage and retrieval of item and associative information.Psychological Review,89, 609–626.
Article
Google Scholar
Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship.Journal of Experimental Psychology: General,115, 39–57.
Article
Google Scholar
Oden, G. C., &Massaro, D. W. (1978). Integration of featural information in speech perception.Psychological Review,85, 172–191.
Article
PubMed
Google Scholar
O’Hagan, A. (1995). Fractional Bayes factors for model comparison.Journal of the Royal Statistical Society: Series B,57, 99–138.
Google Scholar
Raftery, A. E. (1993). Bayesian model selection in structural equation models. In K. A. Bollen & J. S. Long (Eds.),Testing structural equation models (pp. 163–180). Thousand Oaks, CA: Sage.
Google Scholar
Raftery, A. E. (1994).Approximate Bayes factors and accounting for model uncertainty in generalized linear models (Tech. Rep. 255). Seattle: University of Washington, Department of Statistics.
Google Scholar
Raftery, A. E., &Lewis, S. (1991). How many iterations in the Gibbs sampler?Bayesian Statistics,4, 763–773.
Google Scholar
Reed, S. K. (1972). Pattern recognition and categorization.Cognitive Pyschology,3, 382–407.
Article
Google Scholar
Rissanen, J. (1986). Stochastic complexity and modeling.Annals of Statistics,14, 1080–1100.
Article
Google Scholar
Rissanen, J. (1990). Complexity of models. In W. H. Zurek (Ed.),Complexity, entropy, and the physics of information (pp. 117–125). Reading, MA: Addison-Wesley.
Google Scholar
Roberts, F. S. (1979).Measurement theory. Reading, MA: Addison-Wesley.
Google Scholar
Schustack, M. W., &Sternberg, R. J. (1981). Evaluation of evidence in causal inference.Journal of Experimental Psychology: General,110, 101–120.
Article
Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model.Annals of Statistics,6, 461–464.
Article
Google Scholar
Smith, A. F. M. (1991). Bayesian computational methods.Philosophical Transactions of the Royal Society of London: Series A,337, 369–386.
Article
Google Scholar
Smith, A. F. M., &Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods.Journal of the Royal Statistical Society: Series B,55, 3–23.
Google Scholar
Solomonoff, R. J. (1964). A formal theory of inductive inference.Information Control,7, 1–22, 224-254.
Article
Google Scholar
Steiger, J. H. (1990). Structural model evaulation and modification: An interval estimation approach.Multivariate Behavioral Research,25, 173–180.
Article
Google Scholar
Steiger, J. H., &Lind, J. C. (1980, November).Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City.
Takane, Y., &Shibayama, T. (1992). Structure in stimulus identification data. In F. G. Ashby (Ed.),Multidimensional models of perception and cognition (pp. 335–362). Hillsdale, NJ: Erlbaum.
Google Scholar
Thisted, R. A. (1988).Elements of statistical computing: Numerical computation. New York: Chapman & Hall.
Google Scholar
Tierney, L., &Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities.Journal of the American Statistical Association,81, 82–86.
Article
Google Scholar
Townsend, J. T. (1975). The mind-body equation revisited. In C. Cheng (Ed.),Philosophical aspects of the mind-body problem (pp. 200–218). Honolulu: Honolulu University Press.
Google Scholar
Tribus, M. (1969).The principle of maximum entropy. Elmsford, NY: Pergamon.
Google Scholar
Van Zandt, T., &Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-process models, parameter variability, and mixtures.Psychonomic Bulletin & Review,2, 20–54.
Google Scholar
Wakefield, J. C., Smith, A. F. M., Racine-Poon, A., &Gelfand, A. E. (1994). Bayesian analysis of linear and non-linear population models by using the Gibbs sampler.Applied Statistics,43, 201–221.
Article
Google Scholar