Advertisement

Psychonomic Bulletin & Review

, Volume 5, Issue 4, pp 625–643 | Cite as

On the causes and effects of inhibition of return

  • Tracy L. TaylorEmail author
  • Raymond M. Klein
Article

Abstract

Unpredictive visual transient cues have a biphasic effect on reaction times (RTs) to peripheral onset targets. At relatively short (e.g., 150-msec) cue-target stimulus onset asynchronies (SOAs), RTs to targets at cued versus uncued locations are facilitated, whereas at relatively long SOAs (e.g., beyond 300 msec), they are inhibited. The present review explores the conditions under which this latter, inhibitory, effect-referred to as inhibition of return (IOR; Posner & Cohen, 1984)—is revealed and those conditions under which it is generated. We argue that the extant literature converges on the view that IOR reflects a motor response bias that is generated by the activation of an oculomotor program to fixate the cue. However, we reveal that current conceptualizations of IOR are based on a limited sampling of possible tests of the generation and measurement of IOR and indicate where further experimental research is critical.

Keywords

Journal ofExperimental Psychology Superior Colliculus Temporal Order Judgment Attentional Orienting Uncued Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrams, R. A., &Dobkin, R. S. (1994). The gap effect and inhibition of return: Interactive effects on eye movement latencies.Experimental Brain Research,98, 483–487.Google Scholar
  2. Abrams, R. A., &Dobkin, R. S. (1995). Inhibition of return: Effects of attentional cuing on eye movement latencies.Journal of Experimental Psychology: Human Perception & Performance,20, 467–477.Google Scholar
  3. Albano, J. E., Mishkin, M., Westbrook, L. E., &Wurtz, R. H. (1982). Visuomotor deficits following ablation of monkey superior colliculus.Journal of Neurophysiology,48, 318–337.PubMedGoogle Scholar
  4. Albano, J. E., &Wurtz, R. H. (1982). Deficits in eye position following ablation of monkey superior colliculus, pretectum and posteriormedial thalamus.Journal of Neurophysiology,48, 318–337.PubMedGoogle Scholar
  5. Berlucchi, G., Tassinari, G., Marzi, C. A., &DiStefano, M. (1989). Spatial distribution of the inhibitory effect of peripheral non-informative cues on simple reaction time to non-fixated visual targets.Neuropsychologia,27, 201–221.PubMedGoogle Scholar
  6. Biederman, I., &Cooper, E. E. (1992). Size invariance in visual object priming.Journal of Experimental Psychology: Human Perception & Performance,18, 121–133.Google Scholar
  7. Braun, D., Weber, H., Mergner, T., &Schulte-Monting, J. (1992). Saccadic reaction times in patients with frontal and parietal lesions.Brain,115, 1359–1386.PubMedGoogle Scholar
  8. Breau, L.,Mondor, T., &Milliken, B. (1995).Auditory inhibition of return. Poster presented at the annual meeting of the Canadian Society for Brain, Behavior, and Cognitive Science, Halifax, Nova Scotia.Google Scholar
  9. Briand, K. A., &Klein, R. M. (1987). Is Posner’s “beam” the same as Treisman’s “glue”?: On the relation between visual orienting and feature integration theory.Journal of Experimental Psychology: Human Perception & Performance,13, 228–241.Google Scholar
  10. Bushnell, M. C., Goldberg, M. E., &Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention.Journal of Neurophysiology,46, 755–771.PubMedGoogle Scholar
  11. Cheal, M., Chastain, G., &Lyon, D. R. (1998). Inhibition of return in identification tasks.Visual Cognition,5, 365–388.Google Scholar
  12. Chelazzi, L., Biscaldi, M., Corbetta, M., Peru, A., Tassinari, G., &Berlucchi, G. (1995). Oculomotor activity and visual spatial attention.Behavioural Brain Research,71, 81–88.PubMedGoogle Scholar
  13. Colby, C. L. (1991). The neuroanatomy and neurophysiology of attention.Journal of Child Neurology,67, S90-S118.Google Scholar
  14. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G., L., &Petersen, S. E. (1990). Attentional modulation of neural processing of shape, color, and velocity in humans.Science,248, 1556–1559.PubMedGoogle Scholar
  15. Danziger, S., Kingstone, A., &Snyder, J. J. (1998). Inhibition of return to successively stimulated locations in a sequential visual search paradigm.Journal of Experimental Psychology: Human Perception & Performance,24, 1467–1475.Google Scholar
  16. Dorris, M. C., &Munoz, D. P. (1995). A neural correlate for the gap effect on saccadic reaction times in monkey.Journal of Neurophysiology,73, 2558–2562.PubMedGoogle Scholar
  17. Downing, C. J. (1988). Expectancy and visual-spatial attention: Effects on perceptual quality.Journal of Experimental Psychology: Human Perception & Performance,14, 188–202.Google Scholar
  18. Downing, C. J., &Treisman, A. (1995). The shooting line illusion: Attention or apparent motion?Investigative Ophthalmology & Visual Science,36, S856.Google Scholar
  19. Downing, P. E., &Treisman, A. M. (1997). The line-motion illusion: Attention or impletion?Journal of Experimental Psychology: Human Perception & Performance,23, 768–769.Google Scholar
  20. Duncan, J. (1984). Selective attention and the organization of visual information.Journal of Experimental Psychology: General,113, 501–517.Google Scholar
  21. Fischer, B., &Ramsperger, E. (1984). Human express saccades: Extremely short reaction times of goal directed eye movements.Experimental Brain Research,55, 232–242.Google Scholar
  22. Foley, J. M., &Boynton, G. M. (1993). Forward pattern masking and adaptation: Effects of duration, interstimulus interval, contrast, and spatial and temporal frequency.Vision Research,33, 959–980.PubMedGoogle Scholar
  23. Folk, C. L., Remington, R., &Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings.Journal of Experimental Psychology: Human Perception & Performance,18, 1030–1044.Google Scholar
  24. Fuentes, L. J.,Vivas, A. B., &Humphreys, G. W. (in press). Inhibitory tagging of stimulus properties in inhibition of return: Effects of semantic priming and flanker interference.Quarterly Journal of Experimental Psychology.Google Scholar
  25. Gibson, B. S., &Egeth, H. (1994a). Inhibition and disinhibition of return: Evidence from temporal order judgments.Perception & Psychophysics,56, 669–680.Google Scholar
  26. Gibson, B. S., &Egeth, H. (1994b). Inhibition of return to object-based and environment-based locations.Perception & Psychophysics,55, 323–339.Google Scholar
  27. Guitton, D., Buchtel, H. A., &Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades.Experimental Brain Research,58, 455–472.Google Scholar
  28. Handy, T. C.,Jha, A. P., &Mangun, G. R. (in press). Promoting novelty in vision: Inhibition of return modulates perceptual-level processing.Psychological Science.Google Scholar
  29. Harvey, N. (1980). Non-informative effects of stimuli functioning as cues.Quarterly Journal of Experimental Psychology,32, 413–425.PubMedGoogle Scholar
  30. Hawkins, H. L., Hillyard, S. A., Luck, S. J., Mouloua, M., Downing, C. J., &Woodward, D. P. (1990). Visual attention modulates signal detectability.Journal of Experimental Psychology: Human Perception & Performance,16, 802–811.Google Scholar
  31. Hawkins, H. L., Shafto, M. G., &Richardson, K. (1988). Effects of target luminance and cue validity on the latency of visual detection.Perception & Psychophysics,44, 484–492.Google Scholar
  32. Henderson, J. M. (1990).The allocation of visual-spatial attention prior to a saccadic eye movement. Paper presented at the annual meeting of the Psychonomic Society, New Orleans.Google Scholar
  33. Henderson, J. M., Pollatsek, A., &Rayner, K. (1989). Covert visual attention and extrafoveal information use during object identification.Perception & Psychophysics,45, 196–208.Google Scholar
  34. Hepp, K., VanOpstal, A. J., Straumann, D., Hess, B. J., &Henn, V. (1993). Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map.Journal of Neurophysiology,69, 965–979.PubMedGoogle Scholar
  35. Hikosaka, O., Miyauchi, S., &Shimojo, S. (1993a). Focal visual attention produces illusory temporal order and motion sensation.Vision Research,33, 1219–1240.PubMedGoogle Scholar
  36. Hikosaka, O., Miyauchi, S., &Shimojo, S. (1993b). Visual attention revealed by an illusion motion.Neuroscience Research,18, 11–18.PubMedGoogle Scholar
  37. Hikosaka, O., Miyauchi, S., &Shimojo, S. (1993c). Voluntary and stimulus-induced attention detected as motion sensation.Perception,22, 517–526.PubMedGoogle Scholar
  38. Hikosaka, O., &Wurtz, R. H. (1983a). Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus.Brain Research,272, 368–372.PubMedGoogle Scholar
  39. Hikosaka, O., &Wurtz, R. H. (1983b). Visual and oculomotor functions of monkey substantia nigra pars reticulata: III. Memory-contingent visual and saccade responses.Journal of Neurophysiology,49, 1269–1284.Google Scholar
  40. Hikosaka, O., &Wurtz, R. H. (1983c). Visual and oculomotor functions of monkey substantia nigra pars reticulata: IV. Relation of substantia nigra to superior colliculus.Journal of Neurophysiology,49, 1285–1301.Google Scholar
  41. Hikosaka, O., &Wurtz, R. H. (1985a). The basal ganglia. In R. H. Wurtz & M. E. Goldberg (Eds.),The neurobiology of saccadic eye movements (pp. 257–281). Amsterdam: Elsevier.Google Scholar
  42. Hikosaka, O., &Wurtz, R. H. (1985b). Modification of saccadic eye movements by GABA-related substances: I. Effect of muscimol and bicuculline in monkey substantia nigra pars reticulata.Journal of Neurophysiology,53, 266–291.PubMedGoogle Scholar
  43. Hoffman, J. E., &Subramaniam, B. (1995). The role of visual attention in saccadic eye movements.Perception & Psychophysics,57, 787–795.Google Scholar
  44. Hughes, H. C., &Zimba, L. D. (1987). Natural boundaries for the spread of directed visual attention.Neuropsychologia,2, 5–18.Google Scholar
  45. Inhoff, A. W., Pollatsek, A., Posner, M. I., &Rayner, K. (1989). Covert attention and eye movements during reading.Quarterly Journal of Experimental Psychology,41A, 63–89.Google Scholar
  46. Jonides, J. (1980). Towards a model of the mind’s eye’s movement.Canadian Journal of Psychology,34, 103–112.PubMedGoogle Scholar
  47. Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.),Attention and performance IX (Vol. 9, pp. 187–203). Hillsdale, NJ: Erlbaum.Google Scholar
  48. Jonides, J., &Mack, R. (1984). The cost and benefit of cost and benefit.Psychological Bulletin,96, 24–44.Google Scholar
  49. Kingstone, A., &Klein, R. M. (1991). Combining shape and position expectancies: Hierarchical process and selective inhibition.Journal of Experimental Psychology: Human Perception & Performance,17, 512–519.Google Scholar
  50. Kingstone, A., &Klein, R. M. (1993). Visual offsets facilitate saccadic latency: Does predisengagement of visuospatial attention mediate this gap effect?Journal of Experimental Psychology: Human Perception & Performance,19, 1251–1265.Google Scholar
  51. Klein, R. M. (1980). Does oculomotor readiness mediate cognitive control of visual attention? In J. B. Long & A. D. Baddeley (Eds.),Attention and performance VIII (Vol. 8, pp. 259–276). Hillsdale, NJ: Erlbaum.Google Scholar
  52. Klein, R. M. (1994). Perceptual-motor expectancies interact with covert visual orienting under conditions of endogenous but not exogenous control.Canadian Journal of Experimental Psychology,48, 167–181.PubMedGoogle Scholar
  53. Klein, R. M., &Hansen, E. (1990). Chronometric analysis of spotlight failure in endogenous visual orienting.Journal of Experimental Psychology: Human Perception & Performance,16, 790–801.Google Scholar
  54. Klein, R. [M.], &Kerr, B. (1974). Visual signal detection and the locus of foreperiod effects.Memory & Cognition,2, 431–435.Google Scholar
  55. Klein, R. M., Kingstone, A., &Pontefract, A. (1992). Orienting of visual attention. In K. Rayner (Ed.),Eye movements and visual cognition: Scene perception and reading (pp. 46–65). New York: Springer-Verlag.Google Scholar
  56. Klein, R. M., Schmidt, W. C., &Müller, H. J. (1998). Disinhibition of return: Unnecessary and unlikely.Perception & Psychophysics,60, 862–872.Google Scholar
  57. Klein, R. M., &Taylor, T. L. (1994). Categories of cognitive inhibition, with reference to attention. In D. Dagenbach & T. H. Carr (Eds.),Inhibitory processes in attention, memory, and language (pp. 113–150). San Diego, CA: Academic Press.Google Scholar
  58. Kowler, E., Anderson, E., Dosher, B., &Blaser, E. (1994). The role of attention in the programming of saccades.Vision Research,35, 1897–1916.Google Scholar
  59. Krommenhoek, K. P., VanOpstal, A. J., Gielen, C. C. A. M., &Van-Gisbergen, J. A. M. (1993). Remapping of neural activity in the motor colliculus: A neural network study.Vision Research,9, 1287–1298.Google Scholar
  60. Kwak, H., &Egeth, H. (1992). Consequences of allocating attention to locations and to other attributes.Perception & Psychophysics,51, 455–464.Google Scholar
  61. Lambert, A. J., &Hockey, R. (1986). Selective attention and performance with a multidimensional visual display.Journal of Experimental Psychology: Human Perception & Performance,12, 484–495.Google Scholar
  62. Lambert, A. [J.], &Hockey, R. (1991). Peripheral visual changes and spatial attention.Acta Psychologica,76, 149–163.PubMedGoogle Scholar
  63. Law, M. B., Pratt, J., &Abrams, R. A. (1995). Color-based inhibition of return.Perception & Psychophysics,57, 402–408.Google Scholar
  64. Lupiáñez, J., Milán, E. G., Tornay, F. J., Madrid, E., &Tudela, P. (1997). Does IOR occur in discrimination tasks? Yes, it does, but later.Perception & Psychophysics,59, 1241–1254.Google Scholar
  65. Lyon, D. R. (1990). Large and rapid improvement in form discrimination accuracy following a location precue.Acta Psychologica,73, 69–82.PubMedGoogle Scholar
  66. Mangun, G. R.,Hansen, J. C., &Hillyard, S. A. (1986, June).The spatial orienting of attention: Sensory facilitation or response bias. Paper presented at the Eighth International Conference on Eventrelated Potentials of the Brain, Stanford, CA.Google Scholar
  67. Mangun, G. R., &Hillyard, S. A. (1991). Modulations of sensoryevoked brain potentials indicate changes in perceptual processing during visual-spatial priming.Journal of Experimental Psychology: Human Perception & Performance,17, 1057–1074.Google Scholar
  68. Massone, L. L. E. (1994). A neural-network system for control of eye movements: Basic mechanisms.Biological Cybernetics,71, 293–305.PubMedGoogle Scholar
  69. Maylor, E. (1985). Facilitatory and inhibitory components of orienting in visual space. In M. I. Posner & O. S. M. Marin (Eds.),Attention and performance XI (pp. 189–203). Hillsdale, NJ: Erlbaum.Google Scholar
  70. Maylor, E., &Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space.Journal of Experimental Psychology: Human Perception & Performance,11, 777–787.Google Scholar
  71. Maylor, E., &Hockey, R. (1987). Effects of repetition on the facilitatory and inhibitory components of orienting in visual space.Neuropsychologia,25, 41–54.PubMedGoogle Scholar
  72. Mohler, C. W., &Wurtz, R. H. (1976). Organization of monkey superior colliculus: Intermediate layer cells discharging before eye movements.Journal of Neurophysiology,39, 722–744.PubMedGoogle Scholar
  73. Mohler, C. W., &Wurtz, R. H. (1977). Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys.Journal of Neurophysiology,40, 74–94.PubMedGoogle Scholar
  74. Müller, H. J., &Findlay, J. M. (1987). Sensitivity and criterion effects in the spatial cuing of visual attention.Perception & Psychophysics,42, 383–399.Google Scholar
  75. Müller, H. J., &Rabbitt, P. M. A. (1989). Spatial cuing and the relation between the accuracy of “where” and “what” decisions in visual search.Quarterly Journal of Experimental Psychology,41, 747–773.PubMedGoogle Scholar
  76. Müller, H. J., &von Mühlenen, A. (1996). Attentional tracking and inhibition of return in dynamic displays.Perception & Psychophysics,58, 224–249.Google Scholar
  77. Munoz, D. P., &Wurtz, R. H. (1992). Role of the rostral superior colliculus in active visual fixation and execution of express saccades.Journal of Neurophysiology,67, 1000–1002.PubMedGoogle Scholar
  78. Munoz, D. P., &Wurtz, R. H. (1993a). Fixation cells in monkey superior colliculus: I. Characteristics of cell discharge.Journal of Neurophysiology,70, 559–575.Google Scholar
  79. Munoz, D. P., &Wurtz, R. H. (1993b). Fixation cells in monkey superior colliculus: II. Reversible activation and deactivation.Journal of Neurophysiology,70, 576–589.Google Scholar
  80. Nakayama, K., &Mackeben, M. (1989). Sustained and transient components of focal visual attention.Vision Research,29, 1631–1647.PubMedGoogle Scholar
  81. Pontefract, A. J., &Klein, R. M. (1988).Assessing inhibition of return with simple and choice reaction time. Unpublished manuscript.Google Scholar
  82. Posner, M. I. (1974). The psychobiology of attention. In M. Gazzaniga (Ed.),Handbook of psychobiology (pp. 441–480). New York: Academic Press.Google Scholar
  83. Posner, M. I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32, 3–25.PubMedGoogle Scholar
  84. Posner, M. I., &Cohen, Y. (1980). Attention and the control of movements. In G. E. Stelmach & J. Requin (Eds.),Tutorials in motor behavior (pp. 243–258). Amsterdam: North-Holland.Google Scholar
  85. Posner, M. I., &Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.),Attention and performance X (pp. 531–556). Hillsdale, NJ: Erlbaum.Google Scholar
  86. Posner, M. I., Cohen, Y., Choate, L., Hockey, R., &Maylor, E. (1984). Sustained concentration: Passive filtering or active orienting? In S. Kornblum & J. Requin (Eds.),Preparatory states and processes (pp. 49–65). Hillsdale, NJ: Erlbaum.Google Scholar
  87. Posner, M. I., Klein, R. M., Summers, J., &Buggie, S. (1973). On the selection of signals.Memory & Cognition,1, 2–12.Google Scholar
  88. Posner, M. I., Rafal, R. D., Choate, L. S., &Vaughan, J. (1985). Inhibition of return: Neural basis and function.Cognitive Neuropsychology,2, 211–228.Google Scholar
  89. Possamai, C. (1986). Relationship between inhibition and facilitation following a visual cue.Acta Psychologica,61, 243–258.PubMedGoogle Scholar
  90. Pratt, J. (1995). Inhibition of return in a discrimination task.Psychonomic Bulletin & Review,2, 117–120.Google Scholar
  91. Pratt, J., Kingstone, A., &Khoe, W. (1997). Inhibition of return in location- and identity-based choice decision tasks.Perception & Psychophysics,59, 964–971.Google Scholar
  92. Rafal, R. D., Calabresi, P. A., Brennan, C. W., &Sciolto, T. K. (1989). Saccade preparation inhibits reorienting to recently attended locations.Journal of Experimental Psychology: Human Perception & Performance,15, 673–685.Google Scholar
  93. Rafal, R. D., Egly, R., &Rhodes, D. (1994). Effects of inhibition of return on voluntary and visually guided saccades.Canadian Journal of Experimental Psychology,48, 284–300.PubMedGoogle Scholar
  94. Rafal, R. D., &Henik, A. (1994). The neurology of inhibition: Integrating controlled and automatic processes. In D. Dagenbach & T. H. Carr (Eds.),Inhibitory processes in attention, memory, and language (pp. 1–52). San Diego, CA: Academic Press.Google Scholar
  95. Rayner, K., McConkie, G. W., &Ehrlich, S. (1978). Eye movements and integrating information across fixations.Journal of Experimental Psychology: Human Perception & Performance,4, 529–544.Google Scholar
  96. Remington, R. W. (1980). Attention and saccadic eye movements.Journal of Experimental Psychology: Human Perception & Performance,6, 726–744.Google Scholar
  97. Reulen, J. P. H. (1984). Latency of visually evoked saccadic eye movements: I. Saccadic latency and the facilitation model.Biological Cybernetics,50, 251–262.PubMedGoogle Scholar
  98. Reuter-Lorenz, P. A., Hughes, H. C., &Fendrich, R. (1991). The reduction of saccadic latency by prior offset of the fixation point: An analysis of the gap effect.Perception & Psychophysics,49, 167–175.Google Scholar
  99. Reuter-Lorenz, P. A., Jha, A. P., &Rosenquist, J. N. (1996). What is inhibited in inhibition of return?Journal of Experimental Psychology: Human Perception & Performance,22, 367–378.Google Scholar
  100. Rizzolatti, G., Riggio, L., Dascola, I., &Umiltà, C. (1987). Reorienting of attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention.Neuropsychologia,25, 31–40.PubMedGoogle Scholar
  101. Saslow, M. G. (1967). Effects of components of displacement-step stimuli upon latency for saccadic eye movement.Journal of the Optical Society of America,57, 1024–1029.PubMedGoogle Scholar
  102. Schall, J. D. (1997). Visuomotor areas of the frontal lobe. In K. S. Rockland, A. Peters, & J. Kaas (Eds.),Cerebral cortex: Vol. 12. Extrastriate cortex of primates (pp. 527–638) New York: Plenum.Google Scholar
  103. Schiller, P. H. (1977). The effect of superior colliculus ablation on saccades elicited by cortical stimulation.Brain Research,122, 154–156.PubMedGoogle Scholar
  104. Schiller, P. H., Sandell, J. H., &Maunsell, J. H. R. (1987). The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey.Journal of Neurophysiology,57, 1033–1049.PubMedGoogle Scholar
  105. Schiller, P. H., True, S. D., &Conway, J. L. (1980). Deficits in eye movements following frontal eye-field and superior colliculus ablations.Journal of Neurophysiology,44, 1175–1189.PubMedGoogle Scholar
  106. Schlag-Rey, M., Schlag, J., &Dassonville, P. (1992). How the frontal eye field can impose a saccade goal on superior colliculus neurons.Journal of Neurophysiology,67, 1003–1005.PubMedGoogle Scholar
  107. Schmidt, W. C. (1996a). Inhibition of return is not detected using illusory line motion.Perception & Psychophysics,58, 883–898.Google Scholar
  108. Schmidt, W. C. (1996b). “Inhibition of return” without visual input.Neuropsychologia,34, 943–952.PubMedGoogle Scholar
  109. Segraves, M. A., &Park, K. (1993). The relationship of monkey frontal eye field activity to saccade dynamics.Journal of Neurophysiology,69, 1880–1889.PubMedGoogle Scholar
  110. Shepherd, M., Findlay, J. M., &Hockey, R. J. (1986). The relationship between eye movements and spatial attention.Quarterly Journal of Experimental Psychology,38, 475–491.PubMedGoogle Scholar
  111. Shiu, L., &Pashler, H. (1994). Negligible effect of spatial precuing on identification of single digits.Journal of Experimental Psychology: Human Perception & Performance,20, 1037–1054.Google Scholar
  112. Shiu, L., &Pashler, H. (1995). Spatial attention and vernier acuity.Vision Research,35, 337–343.PubMedGoogle Scholar
  113. Shulman, G. L. (1984). An asymmetry in the control of eye movements and shifts of attention.Acta Psychologica,55, 53–69.PubMedGoogle Scholar
  114. Sparks, D. L. (1978). Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset.Brain Research,156, 1–16.PubMedGoogle Scholar
  115. Sparks, D. L., &Mays, L. E. (1983). Spatial localization of saccade targets: I. Compensation for stimulation-induced perturbations in eye position.Journal of Neurophysiology,49, 45–64.PubMedGoogle Scholar
  116. Sparks, D. L., &Porter, J. D. (1983). Spatial localization of saccade targets: II. Activity of superior colliculus neurons preceding compensatory saccades.Journal of Neurophysiology,49, 64–74.PubMedGoogle Scholar
  117. Spence, C., &Driver, J. (1998a). Auditory and audiovisual inhibition of return.Perception & Psychophysics,60, 125–139.Google Scholar
  118. Spence, C., &Driver, J. (1998b).Inhibition of return following an auditory cue: The role of central reorienting events. Manuscript submitted for publication.Google Scholar
  119. Stein, B. E., &Meredith, M. A. (1990). Multisensory integration: Neural and behavioral solutions for dealing with stimuli from different sensory modalities. In A. Diamond (Ed.),The development of neural bases of higher cognitive functions (Annals of the New York Academy of Sciences, Vol. 608, pp. 51–65). New York: New York Academy of Sciences.Google Scholar
  120. Stelmach, L. B., &Herdman, C. M. (1991). Directed attention and perception of temporal order.Journal of Experimental Psychology: Human Perception & Performance,17, 539–550.Google Scholar
  121. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. In W. G. Koster (Ed.),Attention and performance II (pp. 276–315). Amsterdam: North-Holland.Google Scholar
  122. Sternberg, S., &Knoll, R. L. (1973). The perception of temporal order: Fundamental issues and a general model. In S. Kornblum (Ed.),Attention and performance IV (pp. 629–685). New York: Academic Press.Google Scholar
  123. Tanaka, T., &Shimojo, S. (1996). Location vs feature: Reaction time reveals dissociation between two visual functions.Vision Research,36, 2125–2140.PubMedGoogle Scholar
  124. Tassinari, G., Aglioti, S., Chelazzi, L., Marzi, C. A., &Berlucchi, G. (1987). Distribution in the visual field of the costs of voluntarily allocated attention and of the inhibitory after-effects of covert orienting.Neuropsychologia,25, 55–72.PubMedGoogle Scholar
  125. Tassinari, G., Aglioti, S., Chelazzi, L., Peru, A., &Berlucchi, G. (1994). Do peripheral non-informative cues induce early facilitation of target detection?Vision Research,34, 179–189.PubMedGoogle Scholar
  126. Tassinari, G., &Berlucchi, G. (1993). Sensory and attentional components of slowing of manual reaction time to non-fixated visual targets by ipsilateral primes.Vision Research,33, 1525–1534.PubMedGoogle Scholar
  127. Tassinari, G., &Berlucchi, G. (1995). Covert orienting to noninformative cues: Reaction time studies.Behavioural Brain Research,71, 101–112.PubMedGoogle Scholar
  128. Tassinari, G., Biscaldi, M., Marzi, C. A., &Berlucchi, G. (1989). Ipsilateral inhibition and contralateral facilitation of simple reaction time to nonfoveal visual targets from noninformative visual cues.Acta Psychologica,70, 267–291.PubMedGoogle Scholar
  129. Tassinari, G., &Campara, D. (1996). Consequences of covert orienting to non-informative stimuli of different modalities: A unitary mechanism?Neuropsychologia,34, 235–245.PubMedGoogle Scholar
  130. Taylor, T. L. (1997).Generating and measuring inhibition of return. Unpublished doctoral dissertation, Dalhousie University, Halifax, Nova Scotia.Google Scholar
  131. Taylor, T. L., &Klein, R. M. (1998a). Inhibition of return to color: A replication and non-extension of Law, Pratt, and Abrams (1995).Perception & Psychophysics,60, 1452–1456.Google Scholar
  132. Taylor, T. L., &Klein, R. M. (1998b).Motor and attentional bases of inhibition of return. Manuscript in preparation.Google Scholar
  133. Terry, K. M., Valdes, L. A., &Neill, W. T. (1994). Does “inhibition of return” occur in discrimination tasks?Perception & Psychophysics,55, 279–286.Google Scholar
  134. Theeuwes, J. (1991). Exogenous and endogenous control of attention: The effect of visual onsets and offsets.Perception & Psychophysics,49, 83–90.Google Scholar
  135. Tipper, S. P., Driver, J., &Weaver, B. (1991). Object-centered inhibition of return of visual attention.Quarterly Journal of Experimental Psychology,43, 289–298.PubMedGoogle Scholar
  136. Tipper, S. P., Weaver, B., Jerreat, L. M., &Burak, A. L. (1994). Object-based and environment-based inhibition of return of visual attention.Journal of Experimental Psychology: Human Perception & Performance,20, 478–499.Google Scholar
  137. Vaughan, J. (1984). Saccades directed at previously attended locations in space. In A. J. Gale & C.W. Johnson (Eds.),Theoretical and applied aspects of eye movement research (pp. 143–150). Amsterdam: Elsevier.Google Scholar
  138. Wallace, M. T., Meredith, M. A., &Stein, B. E. (1993). Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus.Journal of Neurophysiology,69, 1797–1809.PubMedGoogle Scholar
  139. Ward, L. M. (1994). Supramodal and modality-specific mechanisms for stimulus-driven shifts of auditory and visual attention.Canadian Journal of Experimental Psychology,48, 242–259.PubMedGoogle Scholar
  140. Weaver, B., Lupiáñez, J., &Watson, F. L. (1998). The effects of practice on object-based, location-based, and static-display inhibition of return.Perception & Psychophysics,60, 993–1003.Google Scholar
  141. Werner, W., Dannenberg, S., &Hoffman, K. P. (1997). Arm movementrelated neurons in the primate superior colliculus and underlying reticular formation: Comparison of neuronal activity with EMGs of muscles of the shoulder, arm, and trunk during reaching.Experimental Brain Research,115, 191–205.Google Scholar
  142. Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings.Journal of Experimental Psychology: Human Perception & Performance,19, 676–681.Google Scholar
  143. Yantis, S., &Johnston, J. C. (1990). On the locus of visual selection: Evidence from focused attention tasks.Journal of Experimental Psychology: Human Perception & Performance,16, 135–149.Google Scholar
  144. Yantis, S., &Jones, E. (1991). Mechanisms of attentional selection: Temporally modulated priority tags.Perception & Psychophysics,50, 166–178.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1998

Authors and Affiliations

  1. 1.Dalhousie UniversityHalifaxCanada
  2. 2.Department of PsychologyVanderbilt UniversityNashville

Personalised recommendations