Psychonomic Bulletin & Review

, Volume 5, Issue 4, pp 585–596 | Cite as

Neural mediation of memory for time: Role of the hippocampus and medial prefrontal cortex

  • Raymond P. KesnerEmail author


Within the context of the neurobiology of attribute model, memory for the temporal attribute is composed of at least three features—memory for duration, memory for succession, or temporal order, and memory for past and future time perspective within a dual-based (data and knowledge) memory system. Research aimed at testing the assumption that the hippocampus and interconnected neural circuits mediate the temporal attribute within the data-based memory system and the prefrontal cortex and interconnected neural circuits mediate the temporal attribute within the knowledge-based memory system in animals and humans is reviewed. The research indicates that (1) memory for the duration feature of the temporal attribute is mediated by the hippocampus, but not prefrontal cortex, in both animals and humans, (2) memory for the temporal order feature of the temporal attribute based on new information is subserved by both the hippocampus and the prefrontal cortex, but that based on prior knowledge or the ability to use prior knowledge is supported only by prefrontal cortex, and not the hippocampus, in both animals and humans, and (3) memory for the past (time perspective) feature of the temporal attribute is mediated by the hippocampus, whereas memory for the future (time perspective) feature of the temporal attribute is supported by the prefrontal cortex in both animals and humans. There is a clear parallel between animals and humans in terms of hippocampal and prefrontal cortex mediation of the temporal attribute, supporting the assumption of evolutionary continuity. There is support for a greater involvement of the hippocampus in comparison with the prefrontal cortex in mediating temporal attribute information within the data-based memory system. Conversely, there is support for a greater involvement of the prefrontal cortex in comparison with the hippocampus in mediating temporal attribute information within the knowledge-based memory system. Future research needs to concentrate on the development of new paradigms to measure memory for different temporal features and to uncover the critical neural circuits that subserve these temporal features.


Prefrontal Cortex Memory System Temporal Order Medial Prefrontal Cortex Temporal Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., &Robbins, T.W. (1996). Neural systems engaged by planning: A PET study of the Tower of London task.Neuropsychologia,34, 515–526.CrossRefPubMedGoogle Scholar
  2. Barker, D. J. (1967). Alterations in sequential behavior of rats following ablation of midline limbic cortex.Journal of Comparative & Physiological Psychology,3, 453–604.CrossRefGoogle Scholar
  3. Block, R. A. (1990). Models of psychological time. In R. A. Block (Ed.),Cognitive models of psychological time (pp. 1–36). Hillsdale, NJ: Erlbaum.Google Scholar
  4. Butter, C. M. (1969). Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations inMacaca mulatta.Physiology & Behavior,4, 163–171.CrossRefGoogle Scholar
  5. Chiba, A. A., Johnson, D. L., &Kesner, R. P. (1992). The effects of lesions of the dorsal hippocampus or the ventral hippocampus on performance of a spatial location order recognition task.Society for Neuroscience Abstracts,18, 1422.Google Scholar
  6. Chiba, A. A., Kesner, R. P., Matsuo, F., &Heilbrun, M. P. (1993). A dissociation between affect and recognition following unilateral temporal lobectomy including the amygdala.Society for Neuroscience Abstracts,19, 792.Google Scholar
  7. Chiba, A. A.,Kesner, R. P.,Matsuo, F.,Heilbrun, M. P., &Plumb, S. (1998).A double dissociation between the right and left hippocampus in processing the temporal order of spatial and verbal information. Manuscript submitted for publication.Google Scholar
  8. Chiba, A. A., Kesner, R. P., &Reynolds, A. M. (1994). Memory for spatial location as a function of temporal lag in rats: Role of hippocampus and medial prefrontal cortex.Behavioral & Neural Biology,61, 123–131.CrossRefGoogle Scholar
  9. Cho, Y. H., Beracochea, D., &Jaffard, R. (1993). Extended temporal gradient for retrograde and anterograde amnesia produced by ibotenate entorhinal cortex lesions in mice.Journal of Neuroscience,13, 1759–1766.PubMedGoogle Scholar
  10. Cho, Y. H., &Kesner, R. P. (1996). Involvement of entorhinal cortex or parietal cortex in long-term spatial discrimination memory in rats: Retrograde amnesia.Behavioral Neuroscience,110, 436–442.CrossRefPubMedGoogle Scholar
  11. Cho, Y. H., Kesner, R. P., &Brodale, S. (1995). Retrograde and anterograde amnesia for spatial discrimination in rats: Role of hippocampus, entorhinal cortex, and parietal cortex.Psychobiology,23, 185–194.Google Scholar
  12. Cohen, N. J., &Eichenbaum, H. B. (1993).Memory, amnesia, and hippocampal function. Cambridge, MA: MIT Press.Google Scholar
  13. DeRenzi, E. (1982).Disorders of space exploration and cognition. New York: Wiley.Google Scholar
  14. DiMattia, B. V., &Kesner, R. P. (1988). Spatial cognitive maps: Differential role of parietal cortex and hippocampal formation.Behavioral Neuroscience,102, 471–480.CrossRefPubMedGoogle Scholar
  15. Disterhoft, J. F., Carrillo, M. C., Hopkins, R. O., Gabrieli, J. D. E., &Kesner, R. P. (1996). Impaired trace eyeblink conditioning in severe medial temporal lobe amnesics.Society for Neuroscience Abstracts,22, 1866.Google Scholar
  16. Estes, W. K. (1986). Memory for temporal information. In J. A. Michon & J. L. Jackson (Eds.),Time, mind and behavior (pp. 151–168). New York: Springer-Verlag.Google Scholar
  17. Ferino, F., Thierry, A. M., &Glowinski, J. (1987). Anatomical and electrophysiological evidence for a direct projection from Ammon’s horn to the medial prefrontal cortex in the rat.Experimental Brain Research,65, 421–426.CrossRefGoogle Scholar
  18. Funahashi, S., Inoue, M., &Kubota, K. (1997). Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation.Behavioural Brain Research,84, 203–223.CrossRefPubMedGoogle Scholar
  19. Fuster, J. M. (1980).The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven.Google Scholar
  20. Fuster, J. M. (1985). The prefrontal cortex, mediator of cross-temporal contingencies.Human Neurobiology,4, 169–179.PubMedGoogle Scholar
  21. Fuster, J. M. (1995).Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MA: MIT Press.Google Scholar
  22. Fuster, J. M., Bauer, R. H., &Jervey, J. P. (1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks.Experimental Neurology,77, 679–694.CrossRefPubMedGoogle Scholar
  23. Gibbon, J., Malapani, C., Dale, C. L., &Gallistel, C. R. (1997). Toward a neurobiology of temporal cognition: Advances and challenges.Current Opinion in Neurobiology,7, 170–184.CrossRefPubMedGoogle Scholar
  24. Goldman-Rakic, P. S., Selemon, L. D., &Schwartz, M. L. (1984). Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey.Neuroscience,12, 719–743.CrossRefPubMedGoogle Scholar
  25. Heindel, W., Butters, N., &Salmon, D. (1988). Impaired learning of a motor skill in patients with Huntington’s disease.Behavioral Neuroscience,102, 141–147.CrossRefPubMedGoogle Scholar
  26. Hintzman, D. L., Grandy, C. A., &Gold, E. (1981). Memory for frequency: A comparison of two multiple trace theories.Journal of Experimental Psychology: Human Learning & Memory,7, 231–240.CrossRefGoogle Scholar
  27. Hintzman, D. L., Nozawa, G., &Irmscher, M. (1982). Frequency as a nonpropositional attribute of memory.Journal of Verbal Learning & Verbal Behavior,21, 127–141.CrossRefGoogle Scholar
  28. Hirst, W., &Volpe, B. (1982). Temporal order judgments with amnesia.Brain & Language,1, 294–306.Google Scholar
  29. Hopkins, R. O., &Kesner, R. P. (1994). Short-term memory for duration in hypoxic subjects.Society for Neuroscience Abstracts,20, 1075.Google Scholar
  30. Hopkins, R. O., &Kesner, R. P. (1995). Item and order recognition memory in subjects with hypoxic brain injury.Brain & Cognition,27, 180–201.CrossRefGoogle Scholar
  31. Hopkins, R. O., Kesner, R. P., &Goldstein, M. (1995a). Item and order recognition memory for words, pictures, abstract pictures, spatial locations, and motor responses in subjects with hypoxic brain injury.Brain & Cognition,27, 180–201.CrossRefGoogle Scholar
  32. Hopkins, R. O., Kesner, R. P., &Goldstein, M. (1995b). Memory for novel and familiar spatial and linguistic temporal distance information in hypoxic subjects.Journal of the International Neuropsychological Society,1, 454–468.CrossRefPubMedGoogle Scholar
  33. Horel, J. A., Pytko-Joiner, D. E., Voytko, M. L., &Salsbury, K. (1987). The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold.Behavioral Brain Research,23, 29–42.CrossRefGoogle Scholar
  34. Huppert, F., &Piercey, M. (1976). Recognition memory in amnesic patients: Effects of temporal context and familiarity of material.Cortex,4, 3–28.Google Scholar
  35. Jackson, P., Kesner, R. P., &Amann, K. (1994). Effects of hippocampal and medial prefrontal lesions on discrimination of duration in rats.Society for Neuroscience Abstracts,20, 1210.Google Scholar
  36. Jurado, M. A., Junque, C., Pujol, J., Oliver, B., &Vendrell, P. (1997). Impaired estimation of word occurrence frequency in frontal lobe patients.Neuropsychologia,35, 635–641.CrossRefGoogle Scholar
  37. Kametani, H., &Kesner, R. P. (1989). Retrospective and prospective coding of information: Dissociation of parietal cortex and hippocampal formation.Behavioral Neuroscience,103, 84–89.CrossRefPubMedGoogle Scholar
  38. Kesner, R. P. (1989). Retrospective and prospective coding of information: Role of the medial prefrontal cortex.Journal of Experimental Brain Research,74, 163–167.Google Scholar
  39. Kesner, R. P. (1990a). Learning and memory in rats with an emphasis on the role of the hippocampal formation. In R. P. Kesner & D. S. Olton (Eds.),Neurobiology of comparative cognition (pp. 179–204). Hillsdale, NJ: Erlbaum.Google Scholar
  40. Kesner, R. P. (1990b). Memory for frequency in rats: Role of the hippocampus and medial prefrontal cortex.Behavioral & Neural Biology,53, 402–410.CrossRefGoogle Scholar
  41. Kesner, R. P. (1998). Neurobiological views of memory. In J. L. Martinez & R. P. Kesner (Eds.),The neurobiology of learning and memory (pp. 361–416) New York: Academic Press.CrossRefGoogle Scholar
  42. Kesner, R. P., Bolland, B. L., &Dakis, M. (1993). Memory for spatial locations, motor responses, and objects: Triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex.Experimental Brain Research,93, 462–470.CrossRefGoogle Scholar
  43. Kesner, R. P., &DiMattia, B. V. (1987). Neurobiology of an attribute model of memory (pp. 207–277).Progress in psychobiology and physiological psychology. New York: Academic Press.Google Scholar
  44. Kesner, R. P., &Holbrook, T. (1987). Dissociation of item and order spatial memory in rats following medial prefrontal cortex lesions.Neuropsychologia,25, 653–664.CrossRefPubMedGoogle Scholar
  45. Kesner, R. P., Hopkins, R. O., &Fineman, B. (1994). Item and order dissociation in humans with prefrontal cortex damage.Neuropsychologia,32, 881–891.CrossRefPubMedGoogle Scholar
  46. Kesner, R. P., &Novak, J. (1982). Serial position curve in rats: Role of the dorsal hippocampus.Science,218, 173–174.CrossRefPubMedGoogle Scholar
  47. Kesner, R. P., &Wilburn, M. W. (1974). A review of electrical stimulation of the brain in context of learning and retention.Behavioral Biology,10, 259–293.CrossRefPubMedGoogle Scholar
  48. Kesner, R. P., &Williams, J. M. (1995). Memory for magnitude of reinforcement: Dissociation between the amygdala and hippocampus.Neurobiology of Learning & Memory,64, 237–244.CrossRefGoogle Scholar
  49. Kim, J. J., Clark, R. E., &Thompson, R. F. (1995). Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses.Behavioral Neuroscience,109, 195–203.CrossRefPubMedGoogle Scholar
  50. Kim, J. J., &Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear.Science,256, 675–677.CrossRefPubMedGoogle Scholar
  51. Kojima, S., Matsumura, M., &Kubota, K. (1981). Prefrontal neuron activity during delayed-response performance without imperative GO signals in the monkey.Experimental Neurology,74, 396–407.CrossRefGoogle Scholar
  52. Kolb, B. (1974). Social behavior of rats with chronic prefrontal lesions.Physiological Psychology,87, 466–474.CrossRefGoogle Scholar
  53. Kolb, B., &Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions.Neuropsychologia,19, 491–504.CrossRefPubMedGoogle Scholar
  54. Laroche, S., Jay, T. M., &Thierry, A. M. (1990). Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region.Neuroscience Letters,114, 184–190.CrossRefPubMedGoogle Scholar
  55. Leonard, G., &Milner, B. (1991). Contribution of the right frontal lobe to the encoding and recall of kinesthetic distance information.Neuropsychologia,29, 47–58.CrossRefPubMedGoogle Scholar
  56. Lewinsohn, P. M., Zieler, J. L., Libet, J., Eyeberg, S., &Nielson, G. (1972). Short-term memory: A comparison between frontal and nonfrontal right- and left-hemisphere brain-damaged patients.Journal of Comparative & Physiological Psychology,81, 248–255.CrossRefGoogle Scholar
  57. Madigan, S. A. (1969). Intraserial repetition and coding processes in free recall.Journal of Verbal Learning & Verbal Behavior,8, 828–835.CrossRefGoogle Scholar
  58. Maren, S., Aharonov, G., &Fanselow, M. S. (1996). Excitotoxic dorsal hippocampus lesions and Pavlovian fear conditioning in rats.Society for Neuroscience Abstracts,22, 1379.Google Scholar
  59. Markowitsch, H. J. (1995). Which brain regions are critically involved in the retrieval of old episodic memory?Brain Research Reviews,21, 117–127.CrossRefPubMedGoogle Scholar
  60. McDonald, R. J., &White, N. M. (1993). A triple dissociation of systems: Hippocampus, amygdala, and dorsal striatum.Behavioral Neuroscience,107, 3–22.CrossRefPubMedGoogle Scholar
  61. Meck, W. H., Church, R. M., &Olton, D. S. (1984). Hippocampus, time and memory.Behavioral Neuroscience,98, 3–22.CrossRefPubMedGoogle Scholar
  62. Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren & K. Akert (Eds.),The frontal granular cortex and behavior (pp. 313–334). New York: McGraw-Hill.Google Scholar
  63. Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man.British Medical Bulletin,27, 272–277.PubMedGoogle Scholar
  64. Milner, B., Petrides, M., &Smith, M. L. (1985). Frontal lobes and the temporal organization of memory.Human Neurobiology,4, 137–142.PubMedGoogle Scholar
  65. Morris, R. G., Ahmed, S., Syed, G. M., &Toone, B. K. (1993). Neural correlates of planning ability: Frontal lobe activation during the Tower of London test.Neuropsychologia,31, 1367–1378.CrossRefPubMedGoogle Scholar
  66. Moyer, J. R., Jr., Deyo, R. A., &Disterhoft, J. F. (1990). Hippocampectomy disrupts trace eye-blink conditioning in rabbits.Behavioral Neuroscience,104, 243–252.CrossRefPubMedGoogle Scholar
  67. Mumby, D. G., Wood, E. R., &Pinel, J. P. J. (1992). Object-recognition memory is only mildly impaired in rats with lesions of the hippocampus and amygdala.Psychobiology,20, 18–27.Google Scholar
  68. Nadel, L., &Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex.Current Opinion in Neurobiology,7, 217–227.CrossRefPubMedGoogle Scholar
  69. Niki, H. (1974a). Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response.Brain Research,68, 185–196.Google Scholar
  70. Niki, H. (1974b). Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of response.Brain Research,68, 197–204.Google Scholar
  71. O’Keefe, J., &Nadel, L. (1978).The hippocampus as a cognitive map. Oxford: Clarendon.Google Scholar
  72. Olton, D. S. (1983). Memory functions and the hippocampus. In W. Seifert (Ed.),Neurobiology of the hippocampus (pp. 335–373). New York: Academic Press.Google Scholar
  73. Olton, D. S. (1986). Hippocampal function and memory for temporal context. In R. L. Isaacson & K. H. Pribram (Eds.),The hippocampus (Vol. 3, pp. 281–298). New York: Plenum.Google Scholar
  74. Olton, D. S., Wenk, G. L., Church, R. M., &Meck, W. H. (1988). Attention and the frontal cortex as examined by simultaneous temporal processing.Neuropsychologia,26, 307–318.CrossRefPubMedGoogle Scholar
  75. Otto, T., &Eichenbaum, H. (1992). Complementary roles of the orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task.Behavioral Neuroscience,106, 762–775.CrossRefPubMedGoogle Scholar
  76. Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., &Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man.Neuropsychologia,28, 1021–1034.CrossRefPubMedGoogle Scholar
  77. Passingham, R. (1978). Information about movements in monkeys (Macaca mulatta) with lesions of dorsal prefrontal cortex.Brain Research,152, 313–328.CrossRefPubMedGoogle Scholar
  78. Petrides, M., &Milner, B. (1982). Deficits on subject-ordered task after frontal- and temporal-lobe lesions in man.Neuropsychologia,20, 249–262.CrossRefPubMedGoogle Scholar
  79. Pribram, K. H., &Tubbs, W. E. (1967). Short-term memory, parsing, and the primate frontal cortex.Science,156, 1765–1767.CrossRefPubMedGoogle Scholar
  80. Ragozzino, M. E., &Kesner, R. P. (1996). Learning and memory for taste information: Role of the agranular insular cortex.Society for Neuroscience Abstracts,22, 1868.Google Scholar
  81. Sagar, H. J., Gabrieli, J. D. E., Sullivan, E. V., &Corkin, S. (1990). Recency and frequency discrimination in the amnesic patient H.M.Brain,113, 581–602.CrossRefPubMedGoogle Scholar
  82. Santi, A., Weise, L., &Kuiper, D. (1995). Memory for event duration in rats.Learning & Motivation,26, 83–100.CrossRefGoogle Scholar
  83. Schacter, D. L. (1987). Implicit memory: History and current status.Journal of Experimental Psychology: Learning, Memory, & Cognition,13, 501–518.CrossRefGoogle Scholar
  84. Schacter, D. L., &Tulving, E. (1994).Memory systems 1994. Cambridge, MA: MIT Press.Google Scholar
  85. Shallice, T. (1982). Specific impairments of planning.Philosophical Transactions of the Royal Society of London: Series B,298, 199–209.CrossRefGoogle Scholar
  86. Slotnick, B. M. (1967). Disturbances of maternal behavior in the rat following lesions of the cingulate cortex.Behavior,29, 204–236.CrossRefGoogle Scholar
  87. Squire, L. R. (1994). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. In D. L. Schacter & E. Tulving (Eds.),Memory systems 1994 (pp. 203–231). Cambridge, MA: MIT Press.Google Scholar
  88. Squire, L. R., Nadel, L., &Slater, P. (1981). Anterograde amnesia and memory for temporal order.Neuropsychologia,19, 141–146.CrossRefPubMedGoogle Scholar
  89. Stamm, J. S. (1955). The function of the median cerebral cortex in maternal behavior of rats.Journal of Comparative & Physiological Psychology,48, 347–356.CrossRefGoogle Scholar
  90. Swanson, L. W. (1981). A direct projection from Ammon’s horn to prefrontal cortex in the rat.Brain Research,217, 150–154.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1998

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of UtahSalt Lake City

Personalised recommendations