Skip to main content

Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity

Abstract

This paper describes the concept of dynamic brain imaging and introduces a new methodology, the event-related optical signal, or EROS. Dynamic brain imaging allows one to study noninvasively the time course of activity in specific brain areas. Brain imaging data can contribute to the analysis of the subcomponents of the human information processing system and of their interactions. Several brain imaging methods provide data that possess spatial and temporal resolution at various degrees and can be used for this purpose. In this paper, we focus on the EROS method, which yields data with millisecond temporal resolution and subcentimeter spatial resolution. We describe the fundamentals of this method and report several examples of the types of data that can be obtained with it. Finally, we discuss the possibility of combining different imaging methods, as well as the advantages and limitations that can be expected in this process.

References

  1. Alfano, R. R., Demos, S. G., &Gayen, S. K. (1997). Advances in optical imaging of biomedical media. In D. S. Lester, C. C. Felder, & E. N. Lewis (Eds.),Imaging brain structure and function: Emerging technologies in the neurosciences (Annals of the New York Academy of Sciences, Vol. 820, pp. 248–270). New York: New York Academy of Sciences.

    Google Scholar 

  2. Allison, T., Wood, C. C., &McCarthy, G. (1986). The central nervous system. In M. G. H. Coles, S. W. Porges, & E. Donchin (Eds.),Psychophysiology: Systems, processes, and applications (pp. 5–25). New York: Guilford.

    Google Scholar 

  3. Andrew, R. D., &MacVicar, B. A. (1994). Imaging cell volume changes and neuronal excitation in the hippocampal slice.Neuroscience,62, 371–383.

    PubMed  Article  Google Scholar 

  4. Arezzo, J., Vaughan, H. G., Jr., &Koss, B. (1977). Relationship of neuronal activity to gross movement-related potentials in monkey pre- and postcentral cortex.Brain Research,132, 362–369.

    PubMed  Article  Google Scholar 

  5. Arridge, S. R., &Hebden, J. C. (1997). Optical imaging in medicine: II. Modeling and reconstruction.Physics in Medicine & Biology,42, 841–853.

    Article  Google Scholar 

  6. Arridge, S. R., &Schweiger, M. (1997). Image reconstruction in optical tomography.Philosophical Transactions of the Royal Society of London: Series B,352, 717–726.

    Article  Google Scholar 

  7. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., &Hyde, J. S. (1992). Time course EPI of human brain function during task activation.Magnetic Resonance in Medicine,25, 390–397.

    PubMed  Article  Google Scholar 

  8. Barinaga, M. (1997). New imaging methods provide a better view into the brain [news].Science,276, 1974–1976.

    PubMed  Article  Google Scholar 

  9. Belliveau, J. W., Kennedy, D. N., Jr.,McKinstry, R. C., Buchbinder, B. R., Weisskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J., &Rosen, B. R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging.Science,254, 716–719.

    PubMed  Article  Google Scholar 

  10. Benaron, D. A., Gwiazdowski, S., Kurth, C. D., Steven, J., Delivoria-Papadopoulos, M., &Chance, B. (1990). Optical path length of 754 nm and 816 nm light emitted into the head of infants.Annual International Conference of IEEE,12, 1117–1119.

    Google Scholar 

  11. Benaron, D. A., Ho, D. C., Spilman, S., Van Houten, J. P., &Stevenson, D. K. (1994). Non-recursive linear algorithms for optical imaging in diffusive media.Advances in Experimental Medicine & Biology,361, 215–222.

    Google Scholar 

  12. Benaron, D. A., &Villringer, A. (1998).Noninvasive functional imaging of human brain using light. Manuscript in preparation.

  13. Bocker, K. B., Brunia, C. H., &Cluitmans, P. J. (1994a). A spatiotemporal dipole model of the readiness potential in humans. I. Finger movement.Electroencephalography & Clinical Neurophysiology,91, 275–285.

    Article  Google Scholar 

  14. Bocker, K. B., Brunia, C. H., &Cluitmans, P. J. (1994b). A spatiotemporal dipole model of the readiness potential in humans. II. Foot movement.Electroencephalography & Clinical Neurophysiology,91, 286–294.

    Article  Google Scholar 

  15. Bonhoeffer, T., &Grinvald, A. (1993). Optical imaging of the functional architecture in cat visual cortex: The layout of direction and orientation domains.Advances in Experimental Medicine & Biology,333, 57–69.

    Google Scholar 

  16. Bonhoeffer, T., &Grinvald, A. (1996). Optical imaging based on intrinsic signals. In A. W. Toga & J. C. Mazziotta (Eds.),Brain mapping: The methods (pp. 55–97). San Diego, CA: Academic Press.

    Google Scholar 

  17. Broca, P. (1865). Sur le siège de la faculté du langage articulé [On the localization of the faculty of articulated language].Bulletin of the Society of Anthropology,6, 377–396.

    Article  Google Scholar 

  18. Buckner, R. L. (1996). Beyond HERA: Contributions of specific prefrontal brain areas to long-term memory retrieval.Psychonomic Bulletin & Review,3, 149–158.

    Google Scholar 

  19. Buckner, R. L., Bandettini, P. A., O’Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle, M. E., &Rosen, B. R. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging.Proceedings of the National Academy of Sciences,93, 14878–14883.

    Article  Google Scholar 

  20. Cannestra, A. F., Blood, A. J., Black, K. L., &Toga, A.W. (1996). The evolution of optical signals in human and rodent cortex.NeuroImage,3, 202–208.

    PubMed  Article  Google Scholar 

  21. Chance, B., Kang, K., He, L., Weng, J., &Sevick, E. (1993). Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions.Proceedings of the National Academy of Sciences,90, 3423–3427. [Published erratum appears inProceedings of the National Academy of Sciences, 1995,92, 4074.]

    Article  Google Scholar 

  22. Chance, B., Luo, Q., Nioka, S., Alsop, D. C., &Detre, J. A. (1997). Optical investigations of physiology: A study of intrinsic and extrinsic biomedical contrast.Philosophical Transactions of the Royal Society of London: Series B,352, 707–716.

    Article  Google Scholar 

  23. Chang, J., Graber, H. L., &Barbour, R. L. (1997). Luminescence optical tomography of dense scattering media.Journal of the Optical Society of America A,14, 288–299.

    Article  Google Scholar 

  24. Chang, J., Graber, H. L., Koo, P. C., Aronson, R., Barbour, S. L., &Barbour, R. L. (1997). Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources.IEEE Transactions on Medical Imaging,16, 68–77.

    PubMed  Article  Google Scholar 

  25. Churchland, P. S., &Sejnowski, T. J. (1988). Perspectives in cognitive neuroscience.Science,242, 741–745.

    PubMed  Article  Google Scholar 

  26. Clark, V. P., &Hillyard, S. A. (1996). Spatial selective attention affects early extra-striate but not striate components of the visual evoked potential.Journal of Cognitive Neuroscience,8, 387–402.

    Article  Google Scholar 

  27. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., &Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task.Nature,386, 604–608.

    PubMed  Article  Google Scholar 

  28. Cohen, L. B. (1972). Changes in neuron structure during action potential propogation and synaptic transmission.Physiological Review,53, 373–417.

    Google Scholar 

  29. Coles, M. G. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition.Psychophysiology,26, 251–269.

    PubMed  Article  Google Scholar 

  30. Cooper, C. E., Elwell, C. E., Meek, J. H., Matcher, S. J., Wyatt, J. S., Cope, M., &Delpy, D. T. (1996). The noninvasive measurement of absolute cerebral deoxy-hemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy.Pediatric Research,39, 32–38.

    PubMed  Article  Google Scholar 

  31. Cope, M., &Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation of newborn infants by near infra-red transillumination.Medical & Biological Engineering & Computing,26, 289–294.

    Article  Google Scholar 

  32. Corbetta, M., Shulman, G. L., Miezin, F. M., &Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction.Science,270, 802–805.

    PubMed  Article  Google Scholar 

  33. Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory.Nature,386, 608–611.

    PubMed  Article  Google Scholar 

  34. Dale, A. M., &Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI.Human Brain Mapping,5, 329–340.

    PubMed  Article  Google Scholar 

  35. de Jong, R., Wierda, M., Mulder, G., &Mulder, L. J. (1988). Use of partial stimulus information in response processing.Journal of Experimental Psychology: Human Perception & Performance,14, 682–692.

    Article  Google Scholar 

  36. DeYoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D., &Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex.Proceedings of the National Academy of Sciences,93, 2382–2386.

    Article  Google Scholar 

  37. Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H., Chichilnisky, E. J., &Shadlen, M. N. (1994). fMRI of human visual cortex [letter].Nature,369, 525. [Published erratum appears inNature, 1994,370, 106.]

    PubMed  Article  Google Scholar 

  38. Ernst, T., &Hennig, J. (1994). Observation of a fast response in functional MR.Magnetic Resonance in Medicine,32, 146–149.

    PubMed  Article  Google Scholar 

  39. Fabiani, M.,Gratton, G., &Coles, M. G. H. (in press). Event-related brain potentials. In J. Cacioppo, L. Tassinary, & G. Berntson (Eds.),Handbook of psychophysiology. Cambridge: Cambridge University Press.

  40. Fabiani, M., Gratton, G., &Corballis, P. M. (1996). Non-invasive NIR optical imaging of human brain function with sub-second temporal resolution.Journal of Biomedical Optics,1, 387–398.

    Article  Google Scholar 

  41. Federico, P., Borg, S. G., Salkauskus, A. G., &MacVicar, B. A. (1994). Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig.Neuroscience,58, 461–480.

    PubMed  Article  Google Scholar 

  42. Fiez, J. A., Raife, E. A., Schwarz, J., Balota, D. A., Raichle, M. E., &Petersen, S. E. (1996). Functional anatomical studies of the shortterm maintenance of verbal information.Journal of Neuroscience,16, 808–822.

    PubMed  Google Scholar 

  43. Fox, P. T., &Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.Proceedings of the National Academy of Sciences,83, 1140–1144.

    Article  Google Scholar 

  44. Frahm, J., Bruhn, H., Merboldt, K. D., &Hänicke, W. (1992). Dynamic MR imaging of human brain oxygenation during rest and photic stimulation.Journal of Magnetic Resonance Imaging,2, 501–505.

    PubMed  Article  Google Scholar 

  45. Frahm, J., Merboldt, K. D., Hänicke, W., Kleinschmidt, A., &Boecker, H. (1994). Brain or vein-Oxygenation or flow? On signal physiology in functional MRI of human brain activation.NMR in Biomedicine,7, 45–53.

    PubMed  Article  Google Scholar 

  46. Frostig, R. D. (1994). What does in vivo optical imaging tell us about the primary visual cortex in primates? In A. Peters & K. S. Rockland (Eds.),Cerebral cortex (Vol. 10, pp. 331–358). New York: Plenum.

    Google Scholar 

  47. Frostig, R. D., Lieke, E. E., Ts’o, D. Y., &Grinvald, A. (1990). Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals.Proceedings of the National Academy of Sciences,87, 6082–6086.

    Article  Google Scholar 

  48. Gardner, H. (1985).The mind’s new science: A history of the cognitive revolution. New York: BasicBooks.

    Google Scholar 

  49. Gazzaniga, M. S. (Ed.) (1995).The cognitive neurosciences. Cambridge, MA: MIT Press.

    Google Scholar 

  50. Gazzaniga, M. S., Ivry, R., &Mangun, G. R. (1998).Cognitive neuroscience: The biology of the mind. New York: Norton.

    Google Scholar 

  51. Gevins, A. (1996). Electrophysiological imaging of brain function. In A. W. Toga & J. C. Mazziotta (Eds.),Brain mapping: The methods (pp. 259–276). San Diego, CA: Academic Press.

    Google Scholar 

  52. Gratton, E.,Gratton, G.,Fabiani, M., &Corballis, P. M. (1996). Detection of brain activity using time-resolved near infrared techniques. InProceedings of the Fifth International Conference: Peace Through Mind-Brain Science (pp. 214–223).

  53. Gratton, E., Jameson, D. M., Rosato, N., &Weber, G. (1984). Multifrequency cross-correlation phase fluorometer using synchrotron radiation.Reviews of Scientific Instrumentation,55, 486–494.

    Article  Google Scholar 

  54. Gratton, E., &Limkeman, M. (1983). A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution.Biophysical Journal,44, 315–324.

    PubMed  Article  Google Scholar 

  55. Gratton, G. (1997). Attention and probability effects in the human occipital cortex: An optical imaging study.NeuroReport,8, 1749–1753.

    PubMed  Article  Google Scholar 

  56. Gratton, G., Coles, M. G., Sirevaag, E. J., Eriksen, C. W., &Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis.Journal of Experimental Psychology: Human Perception & Performance,14, 331–344.

    Article  Google Scholar 

  57. Gratton, G., Corballis, P. M., Cho, E., Fabiani, M., &Hood, D. (1995). Shades of gray matter: Noninvasive optical images of human brain responses during visual stimulation.Psychophysiology,32, 505–509.

    PubMed  Article  Google Scholar 

  58. Gratton, G., Corballis, P. M., &Jain, S. (1997). Hemispheric organization of visual memories.Journal of Cognitive Neuroscience,9, 92–104.

    Article  Google Scholar 

  59. Gratton, G., Fabiani, M., Corballis, P. M., Hood, D., Goodman, M. R., Hirsch, J., Kim, K., Friedman, D., &Gratton, E. (1997). Non-invasive optical measures of localized neuronal activity in the human occipital cortex.NeuroImage,6, 168–180.

    PubMed  Article  Google Scholar 

  60. Gratton, G.,Fabiani, M., &DeSoto, M. C. (1998). The time course of response-related brain activity in a choice reaction time task: Comparison of optical and electrophysiological measures.NeuroImage,7, S688.

    Google Scholar 

  61. Gratton, G., Fabiani, M., Friedman, D., Franceschini, M. A., Fantini, S., &Gratton, E. (1995). Rapid changes of optical parameters in the human brain during a tapping task.Journal of Cognitive Neuroscience,7, 446–456.

    Article  Google Scholar 

  62. Gratton, G., Fabiani, M., Goodman-Wood, M. R., &DeSoto, M. C. (1998). Memory-driven processing in human medial occipital cortex: An event-related optical signal (EROS) study.Psychophysiology,35, 348–351.

    PubMed  Article  Google Scholar 

  63. Gratton, G., Maier, J. S., Fabiani, M., Mantulin, W. W., &Gratton, E. (1994). Feasibility of intracranial near-infrared optical scanning.Psychophysiology,31, 211–215.

    PubMed  Article  Google Scholar 

  64. Gray, C. M., Konig, P., Engel, A. K., &Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature,338, 334–337.

    PubMed  Article  Google Scholar 

  65. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., &Wiesel, T. N. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals.Nature,324, 361–364.

    PubMed  Article  Google Scholar 

  66. Hackley, S. A. (1993). An evaluation of the automaticity of sensory processing using event-related potentials and brain-stem reflexes.Psychophysiology,30, 415–428.

    PubMed  Article  Google Scholar 

  67. Hackley, S. A., &Valle-Inclán, F. (1998). Autonomic alerting does not speed late motoric processes in a reaction time task.Nature,391, 786–788.

    PubMed  Article  Google Scholar 

  68. Haglund, M. M. (1997). Intraoperative optical imaging of epileptiform and functional activity.Neurosurgery Clinics of North America,8, 413–420.

    PubMed  Google Scholar 

  69. Haglund, M. M., Ojemann, G. A., &Hochman, D. W. (1992). Optical imaging of epileptiform and functional activity in human cerebral cortex.Nature,358, 668–671.

    PubMed  Article  Google Scholar 

  70. Hari, R., &Lounasmaa, O. V. (1989). Recording and interpretation of cerebral magnetic fields.Science,244, 432–436.

    PubMed  Article  Google Scholar 

  71. Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Munte, T. F., Gos, A., Scherg, M., Johannes, S., Hundeshagen, H., Gazzaniga, M. S., &Hillyard, S. A. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans.Nature,372, 543–546.

    PubMed  Article  Google Scholar 

  72. Hill, D. K., &Keynes, R. D. (1949). Opacity changes in stimulated nerve.Journal of Physiology,108, 278–281.

    Google Scholar 

  73. Hirth, C., Obrig, H., Valdueza, J., Dirnagl, U., &Villringer, A. (1997). Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task: A combined near infrared and transcranial Doppler sonography study.Advances in Experimental Medicine & Biology,411, 461–469.

    Google Scholar 

  74. Hock, C., Villringer, K., Muller-Spahn, F., Wenzel, R., Heekeren, H., Schuh-Hofer, S., Hofmann, M., Minoshima, S., Schwaiger, M., Dirnagl, U., &Villringer, A. (1997). Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)-Correlation with simultaneous rCBF-PET measurements.Brain Research,755, 293–303.

    PubMed  Article  Google Scholar 

  75. Hoshi, Y., &Tamura, M. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity.Journal of Applied Physiology,75, 1842–1846.

    PubMed  Google Scholar 

  76. Hubel, D. H., &Wiesel, T. N. (1979). Brain mechanisms of vision.Scientific American,241 (3), 150–162.

    PubMed  Article  Google Scholar 

  77. Ishimaru, A. (1978).Wave propagation and scattering in random media (Vol. 1). New York: Academic Press.

    Google Scholar 

  78. Javitt, D. C., Schroeder, C. E., Steinschneider, M., Arezzo, J. C., &Vaughan, H. G., Jr. (1992). Demonstration of mismatch negativity in the monkey.Electroencephalography & Clinical Neurophysiology,83, 87–90.

    Article  Google Scholar 

  79. Javitt, D. C., Steinschneider, M., Schroeder, C. E., Vaughan, H. G., &Arezzo, J. C. (1994). Detection of stimulus deviance within primate primary auditory cortex: Intracortical mechanisms of mismatch negativity (MMN) generation.Brain Research,667, 192–200.

    PubMed  Article  Google Scholar 

  80. Jiang, H., Paulsen, K. D., &Osterberg, U. L. (1996). Optical image reconstruction using DC data: Simulations and experiments.Physics in Medicine & Biology,41, 1483–1498.

    Article  Google Scholar 

  81. Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.Science,198, 1264–1267.

    PubMed  Article  Google Scholar 

  82. Johnson, M. K., Nolde, S. F., Mather, M., Kounios, J., Schacter, D. L., &Curran, T. (1997). The similarity of brain activity associated with true and false recognition memory depends on test format.Psychological Science,8, 250–257.

    Article  Google Scholar 

  83. Kato, T., Kamei, A., Takashima, S., &Ozaki, T. (1993). Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy.Journal of Cerebral Blood Flow & Metabolism,13, 516–520.

    Google Scholar 

  84. Kelley, W. M., Buckner, R. L., Miezin, F. M., Raichle, M. E., Cohen, N. J., &Petersen, S. E. (1998). Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding.Neuron,20, 927–936.

    PubMed  Article  Google Scholar 

  85. Kolb, B., &Whishaw, I. Q. (1996).Fundamentals of human neuropsychology (4th ed.). New York: W. H. Freeman.

    Google Scholar 

  86. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R., Cheng, H.-M., Brady, T. J., &Rosen, B. R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.Proceedings of the National Academy of Sciences,89, 5675–5679.

    Article  Google Scholar 

  87. Lee, A. T., Glover, G. H., &Meyer, C. H. (1995). Discrimination of large venous vessels in time-course spiral blood-oxygen-leveldependent magnetic-resonance functional neuroimaging.Magnetic Resonance in Medicine,33, 745–754.

    PubMed  Article  Google Scholar 

  88. Loftus, E. F., &Pickrell, J. E. (1995). The formation of false memories.Psychiatric Annals,25, 720–725.

    Google Scholar 

  89. Lorente de Nó, R. (1947). Action potential of the motoneurons of the hypoglossus nucleus.Journal of Cellular & Comparative Physiology,29, 207–287.

    Article  Google Scholar 

  90. Lu, Z. L., Williamson, S. J., &Kaufman, L. (1992). Behavioral lifetime of human auditory sensory memory predicted by physiological measures.Science,258, 1668–1670.

    PubMed  Article  Google Scholar 

  91. Malonek, D., &Grinvald, A. (1996). Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: Implications for functional brain mapping.Science,272, 551–554.

    PubMed  Article  Google Scholar 

  92. Malonek, D., Tootell, R. B., &Grinvald, A. (1994). Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT.Proceedings of the Royal Society of London: Series B,258, 109–119.

    Article  Google Scholar 

  93. Marr, D. (1982).Vision. New York: W. H. Freeman.

    Google Scholar 

  94. McCarthy, G., &Wood, C. C. (1987). Intracranial recordings of endogenous ERPs in humans.Electroencephalography & Clinical Neurophysiology,39, 331–337.

    Google Scholar 

  95. Meek, J. H., Elwell, C. E., Khan, M. J., Romaya, J., Wyatt, J. S., Delpy, D. T., &Zeki, S. (1995). Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy.Proceedings of the Royal Society of London: Series B,261, 351–356.

    Article  Google Scholar 

  96. Menon, V., Freeman, W. J., Cutillo, B. A., Desmond, J. E., Ward, M. F., Bressler, S. L., Laxer, K. D., Barbaro, N., &Gevins, A. S. (1996). Spatio-temporal correlations in human gamma band electrocorticograms.Electroencephalography & Clinical Neurophysiology,98, 89–102. [Published erratum appears inElectroencephalography & Clinical Neurophysiology, 1996,98, 228.]

    Article  Google Scholar 

  97. Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory.Annals of Neurology,28, 597–613.

    PubMed  Article  Google Scholar 

  98. Meyer, D. E., Osman, A. M., Irwin, D. E., &Yantis, S. (1988). Modern mental chronometry.Biological Psychology,26, 3–68.

    PubMed  Article  Google Scholar 

  99. Miltner, W., Johnson, R., Jr., Simpson, G. V., &Ruchkin, D. S. (1994). A test of brain electrical source analysis (BESA): A simulation study.Electroencephalography & Clinical Neurophysiology,91, 295–310.

    Article  Google Scholar 

  100. Näätänen, R. (1992).Attention and brain function. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  101. Nunez, P. L. (1981).Electric fields of the brain. New York: Oxford University Press.

    Google Scholar 

  102. Nyberg, L., Cabeza, R., &Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model.Psychonomic Bulletin & Review,3, 135–148.

    Google Scholar 

  103. Obrig, H., Wolf, T., Doge, C., Hulsing, J. J., Dirnagl, U., &Villringer, A. (1996). Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured by near-infrared spectroscopy.Advances in Experimental Medicine & Biology,388, 219–224.

    Google Scholar 

  104. Okada, E., Firbank, M., &Delpy, D. T. (1995). The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy.Physics in Medicine & Biology,40, 2093–2108.

    Article  Google Scholar 

  105. Okada, Y. C., Williamson, S. J., &Kaufman, L. (1982). Magnetic field of the human sensorimotor cortex.International Journal of Neuroscience,17, 33–38.

    PubMed  Article  Google Scholar 

  106. Paulsen, K. D., &Jiang, H. (1995). Spatially varying optical property reconstruction using a finite element diffusion equation approximation.Medical Physics,22, 691–701.

    PubMed  Article  Google Scholar 

  107. Petersen, S. E., Corbetta, M., Miezin, F. M., &Shulman, G. L. (1994). PET studies of parietal involvement in spatial attention: Comparison of different task types.Canadian Journal of Experimental Psychology,48, 319–338.

    PubMed  Google Scholar 

  108. Posner, M. I. (Ed.) (1989).Foundations of cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  109. Posner, M. I., &Raichle, M. E. (1994).Images of mind. New York: Scientific American Books.

    Google Scholar 

  110. Raichle, M. E. (1986). Neuroimaging.Trends in Neurosciences,9, 525–529.

    Article  Google Scholar 

  111. Raichle, M. E. (1994, April). Visualizing the mind.Scientific American,270, 58–64.

    PubMed  Article  Google Scholar 

  112. Rector, D. M., Poe, G. R., Kristensen, M. P., &Harper, R. M. (1995). Imaging the dorsal hippocampus: Light reflectance relationships to electroencephalographic patterns during sleep.Brain Research,696, 151–160.

    PubMed  Article  Google Scholar 

  113. Rector, D. M., Poe, G. R., Kristensen, M. P., &Harper, R. M. (1997). Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation.Journal of Neurophysiology,78, 1707–1713.

    PubMed  Google Scholar 

  114. Rees, G., Frith, C. D., &Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task.Science,278, 1616–1619.

    PubMed  Article  Google Scholar 

  115. Reppas, J. B., Niyogi, S., Dale, A. M., Sereno, M. I., &Tootell, R. B. (1997). Representation of motion boundaries in retinotopic human visual cortical areas.Nature,388, 175–179.

    PubMed  Article  Google Scholar 

  116. Riehle, A., Gruen, S., Diesmann, M., &Aertsen, A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function.Science,278, 1950–1953.

    PubMed  Article  Google Scholar 

  117. Riehle, A., &Requin, J. (1993). The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex.Behavioural Brain Research,53, 35–49.

    PubMed  Article  Google Scholar 

  118. Ritter, W., Deacon, D., Gomes, H., Javitt, D. C., &Vaughan, H. G., Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review.Ear & Hearing,16, 52–67.

    Article  Google Scholar 

  119. Roediger, H. L., III (1996). Memory illusions.Journal of Memory & Language,35, 76–100.

    Article  Google Scholar 

  120. Roediger, H. L., III, &McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 803–814.

    Article  Google Scholar 

  121. Roelfsema, P. R., Engel, A. K., Konig, P., &Singer, W. (1996). The role of neuronal synchronization in response selection: A biologically plausible theory of structured representations in the visual cortex.Journal of Cognitive Neuroscience,8, 603–625.

    Article  Google Scholar 

  122. Roy, C. S., &Sherrington, C. S. (1890). On the regulation of the blood supply to the brain.Journal of Physiology,11, 85–108.

    PubMed  Google Scholar 

  123. Rugg, M. D. (Ed.) (1997).Cognitive neuroscience. Cambridge, MA: MIT Press.

    Google Scholar 

  124. Rugg, M. D., &Coles, M. G. H. (Eds.) (1995).Electrophysiology of mind: Event-related brain potentials and cognition. Oxford: Oxford University Press.

    Google Scholar 

  125. Sanders, A. F. (1981). Stage analysis of reaction processes. In G. E. Stelmack & J. Requin (Eds.),Tutorials in motor behavior (pp. 331–354). Amsterdam: North-Holland.

    Google Scholar 

  126. Schacter, D. L., Reiman, E., Curran, T., Yun, L. S., Bandy, D., Mc-Dermott, K. B., &Roediger, H. L., III (1996). Neuroanatomical correlates of veridical and illusory recognition memory: Evidence from positron emission tomography.Neuron,17, 267–274.

    PubMed  Article  Google Scholar 

  127. Scherg, M., Vajsar, J., &Picton, T. W. (1989). A source analysis of the human auditory evoked potentials.Journal of Cognitive Neuroscience,1, 336–355.

    Article  Google Scholar 

  128. Scherg, M., &Von Cramon, D. (1986). Evoked dipole source potentials of the human auditory cortex.Electroencephalography & Clinical Neurophysiology,65, 344–360.

    Article  Google Scholar 

  129. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J.W., Brady, T. J., Rosen, B. R., &Tootell, R. B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging.Science,268, 889–893.

    PubMed  Article  Google Scholar 

  130. Singer, W. (1994). Coherence as an organizing principle of cortical functions. In O. Sporns & G. Tononi (Eds.),Selectionism and the brain (Vol. 37, pp. 153–183). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  131. Skarda, C. A., &Freeman, W. J. (1987). How brains make chaos in order to make sense of the world.Behavioral & Brain Sciences,10, 161–195.

    Article  Google Scholar 

  132. Squire, L. R. (1989). Mechanisms of memory. In K. L. Kelner & D. E. Koshland (Eds.),Molecules to models: Advances in neuroscience (chap. 40). Washington, DC: AAAS.

    Google Scholar 

  133. Stepnoski, R. A., La Porta, A., Raccuia-Behling, F., Blonder, G. E., Slusher, R. E., &Kleinfeld, D. (1991). Noninvasive detection of changes in membrane potential in cultured neurons by light scattering.Proceedings of the National Academy of Sciences,88, 9382–9386.

    Article  Google Scholar 

  134. Sternberg, S. (1966). High-speed scanning in human memory.Science,153, 652–654.

    PubMed  Article  Google Scholar 

  135. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. In W. G. Koster (Ed.),Attention and performance II (pp. 276–315). Amsterdam: North-Holland.

    Google Scholar 

  136. Stevenson, D. K., Vreman, H. J., &Benaron, D. A. (1996). Evaluation of neonatal jaundice: Monitoring the transition in bilirubin metabolism.Journal of Perinatology,16 (3, Pt. 2), S62–67.

    PubMed  Google Scholar 

  137. Taddeucci, A., Martelli, F., Barilli, M., Ferrari, M., &Zaccanti, G. (1996). Optical properties of brain tissue.Journal of Biomedical Optics,1, 117–123.

    Article  Google Scholar 

  138. Tamura, M., Hoshi, Y., &Okada, F. (1997). Localized near-infrared spectroscopy and functional optical imaging of brain activity.Philosophical Transactions of the Royal Society of London: Series B,352, 737–742.

    Article  Google Scholar 

  139. Thatcher, R. W., Toro, C., Pflieger, M. E., &Hallett, M. (1994). Human neural network dynamics using multimodal registration of EEG, PET, and MRI. In M. Hallett, T. A. Zeffiro, E. R. John, & M. Huerta (Eds.),Functional neuroimaging: Technical foundations (pp. 269–278). San Diego, CA: Academic Press.

    Google Scholar 

  140. Tiitinen, H., Alho, K., Huotilainen, M., Ilmoniemi, R. J., Simola, J., &Näätänen, R. (1993). Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity.Psychophysiology,30, 537–540.

    PubMed  Article  Google Scholar 

  141. Toga, A. W., &Mazziotta, J. C. (Eds.) (1996).Brain mapping: The methods. San Diego, CA: Academic Press.

    Google Scholar 

  142. Tootell, R. B., Dale, A. M., Sereno, M. I., &Malach, R. (1996). New images from human visual cortex.Trends in Neurosciences,19, 481–489.

    PubMed  Article  Google Scholar 

  143. Tulving, E., Kapur, S., Craik, F. I., Moscovitch, M., &Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings.Proceedings of the National Academy of Sciences,91, 2016–2020.

    Article  Google Scholar 

  144. Turner, R. (1995). Functional mapping of the human brain with magnetic resonance imaging.Seminars in the Neurosciences,7, 179–194.

    Article  Google Scholar 

  145. Villringer, A. (1997). Understanding functional neuroimaging methods based on neurovascular coupling.Advances in Experimental Medicine & Biology,413, 177–193.

    Google Scholar 

  146. Villringer, A., &Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function.Trends in Neurosciences,20, 435–442.

    PubMed  Article  Google Scholar 

  147. Villringer, A., &Dirnagl, U. (1995). Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging.Cerebrovascular & Brain Metabolism Reviews,7, 240–276.

    Google Scholar 

  148. Wang, G., Tanaka, K., &Tanifuji, M. (1996). Optical imaging of functional organization in the monkey inferotemporal cortex.Science,272, 1665–1668.

    PubMed  Article  Google Scholar 

  149. Weinberg, H., Cheyne, D., &Crisp, D. (1990). Electroencephalographic and magnetoencephalographic studies of motor function.Advances in Neurology,54, 193–205.

    PubMed  Google Scholar 

  150. Wenzel, R., Obrig, H., Ruben, J., Villringer, K., Thiel, A., Bernarding, J., Dirnagl, U., &Villringer, A. (1996). Cerebral blood oxygenation changes induced by visual stimulation in humans.Journal of Biomedical Optics,1, 399–404.

    Article  Google Scholar 

  151. Wilson, B. C., Patterson, M. S., Flock, S. T., &Wyman, D. R. (1989). Tissue optical properties in relation to light propagation models and in vivo dosimetry. In B. Chance (Ed.),Photon migration in tissues (pp. 25–42). New York: Plenum.

    Google Scholar 

  152. Winkler, I., Tervaniemi, M., Huotilainen, M., Ilmoniemi, R., Ahonen, A., Salonen, O., Standertskjold-Nordenstam, C. G., &Näätänen, R. (1995). From objective to subjective: Pitch representation in the human auditory cortex.NeuroReport,6, 2317–2320.

    PubMed  Article  Google Scholar 

  153. Zhu, W., Wang, Y., Deng, Y., Yao, Y., &Barbour, R. L. (1997). A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography.IEEE Transactions on Medical Imaging,16, 210–217.

    PubMed  Article  Google Scholar 

  154. Zhu, W., Wang, Y., Yao, Y., Chang, J., Graber, H. L., &Barbour, R. L. (1997). Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method.Journal of the Optical Society of America A,14, 799–807.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriele Gratton.

Additional information

Preparation of this paper was supported in part by NIMH Grant MH57125 to G.G. and by McDonnell-Pew Grant 97-32 to M.F. The authors wish to thank Nelson Cowan, Steve Hackley, Toshinori Kato, Kathleen McDermott, Mike Stadler, Endel Tulving, Arno Villringer, and one anonymous reviewer for comments and suggestions on an earlier version of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gratton, G., Fabiani, M. Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity. Psychonomic Bulletin & Review 5, 535–563 (1998). https://doi.org/10.3758/BF03208834

Download citation

Keywords

  • Positron Emission Tomography
  • Primary Visual Cortex
  • Spatial Specificity
  • Intrinsic Optical Signal
  • Active Brain Area