Advertisement

Psychonomic Bulletin & Review

, Volume 5, Issue 4, pp 535–563 | Cite as

Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity

  • Gabriele GrattonEmail author
  • Monica Fabiani
Article

Abstract

This paper describes the concept of dynamic brain imaging and introduces a new methodology, the event-related optical signal, or EROS. Dynamic brain imaging allows one to study noninvasively the time course of activity in specific brain areas. Brain imaging data can contribute to the analysis of the subcomponents of the human information processing system and of their interactions. Several brain imaging methods provide data that possess spatial and temporal resolution at various degrees and can be used for this purpose. In this paper, we focus on the EROS method, which yields data with millisecond temporal resolution and subcentimeter spatial resolution. We describe the fundamentals of this method and report several examples of the types of data that can be obtained with it. Finally, we discuss the possibility of combining different imaging methods, as well as the advantages and limitations that can be expected in this process.

Keywords

Positron Emission Tomography Primary Visual Cortex Spatial Specificity Intrinsic Optical Signal Active Brain Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alfano, R. R., Demos, S. G., &Gayen, S. K. (1997). Advances in optical imaging of biomedical media. In D. S. Lester, C. C. Felder, & E. N. Lewis (Eds.),Imaging brain structure and function: Emerging technologies in the neurosciences (Annals of the New York Academy of Sciences, Vol. 820, pp. 248–270). New York: New York Academy of Sciences.Google Scholar
  2. Allison, T., Wood, C. C., &McCarthy, G. (1986). The central nervous system. In M. G. H. Coles, S. W. Porges, & E. Donchin (Eds.),Psychophysiology: Systems, processes, and applications (pp. 5–25). New York: Guilford.Google Scholar
  3. Andrew, R. D., &MacVicar, B. A. (1994). Imaging cell volume changes and neuronal excitation in the hippocampal slice.Neuroscience,62, 371–383.PubMedCrossRefGoogle Scholar
  4. Arezzo, J., Vaughan, H. G., Jr., &Koss, B. (1977). Relationship of neuronal activity to gross movement-related potentials in monkey pre- and postcentral cortex.Brain Research,132, 362–369.PubMedCrossRefGoogle Scholar
  5. Arridge, S. R., &Hebden, J. C. (1997). Optical imaging in medicine: II. Modeling and reconstruction.Physics in Medicine & Biology,42, 841–853.CrossRefGoogle Scholar
  6. Arridge, S. R., &Schweiger, M. (1997). Image reconstruction in optical tomography.Philosophical Transactions of the Royal Society of London: Series B,352, 717–726.CrossRefGoogle Scholar
  7. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., &Hyde, J. S. (1992). Time course EPI of human brain function during task activation.Magnetic Resonance in Medicine,25, 390–397.PubMedCrossRefGoogle Scholar
  8. Barinaga, M. (1997). New imaging methods provide a better view into the brain [news].Science,276, 1974–1976.PubMedCrossRefGoogle Scholar
  9. Belliveau, J. W., Kennedy, D. N., Jr.,McKinstry, R. C., Buchbinder, B. R., Weisskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J., &Rosen, B. R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging.Science,254, 716–719.PubMedCrossRefGoogle Scholar
  10. Benaron, D. A., Gwiazdowski, S., Kurth, C. D., Steven, J., Delivoria-Papadopoulos, M., &Chance, B. (1990). Optical path length of 754 nm and 816 nm light emitted into the head of infants.Annual International Conference of IEEE,12, 1117–1119.Google Scholar
  11. Benaron, D. A., Ho, D. C., Spilman, S., Van Houten, J. P., &Stevenson, D. K. (1994). Non-recursive linear algorithms for optical imaging in diffusive media.Advances in Experimental Medicine & Biology,361, 215–222.Google Scholar
  12. Benaron, D. A., &Villringer, A. (1998).Noninvasive functional imaging of human brain using light. Manuscript in preparation.Google Scholar
  13. Bocker, K. B., Brunia, C. H., &Cluitmans, P. J. (1994a). A spatiotemporal dipole model of the readiness potential in humans. I. Finger movement.Electroencephalography & Clinical Neurophysiology,91, 275–285.CrossRefGoogle Scholar
  14. Bocker, K. B., Brunia, C. H., &Cluitmans, P. J. (1994b). A spatiotemporal dipole model of the readiness potential in humans. II. Foot movement.Electroencephalography & Clinical Neurophysiology,91, 286–294.CrossRefGoogle Scholar
  15. Bonhoeffer, T., &Grinvald, A. (1993). Optical imaging of the functional architecture in cat visual cortex: The layout of direction and orientation domains.Advances in Experimental Medicine & Biology,333, 57–69.Google Scholar
  16. Bonhoeffer, T., &Grinvald, A. (1996). Optical imaging based on intrinsic signals. In A. W. Toga & J. C. Mazziotta (Eds.),Brain mapping: The methods (pp. 55–97). San Diego, CA: Academic Press.Google Scholar
  17. Broca, P. (1865). Sur le siège de la faculté du langage articulé [On the localization of the faculty of articulated language].Bulletin of the Society of Anthropology,6, 377–396.CrossRefGoogle Scholar
  18. Buckner, R. L. (1996). Beyond HERA: Contributions of specific prefrontal brain areas to long-term memory retrieval.Psychonomic Bulletin & Review,3, 149–158.Google Scholar
  19. Buckner, R. L., Bandettini, P. A., O’Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle, M. E., &Rosen, B. R. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging.Proceedings of the National Academy of Sciences,93, 14878–14883.CrossRefGoogle Scholar
  20. Cannestra, A. F., Blood, A. J., Black, K. L., &Toga, A.W. (1996). The evolution of optical signals in human and rodent cortex.NeuroImage,3, 202–208.PubMedCrossRefGoogle Scholar
  21. Chance, B., Kang, K., He, L., Weng, J., &Sevick, E. (1993). Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions.Proceedings of the National Academy of Sciences,90, 3423–3427. [Published erratum appears inProceedings of the National Academy of Sciences, 1995,92, 4074.]CrossRefGoogle Scholar
  22. Chance, B., Luo, Q., Nioka, S., Alsop, D. C., &Detre, J. A. (1997). Optical investigations of physiology: A study of intrinsic and extrinsic biomedical contrast.Philosophical Transactions of the Royal Society of London: Series B,352, 707–716.CrossRefGoogle Scholar
  23. Chang, J., Graber, H. L., &Barbour, R. L. (1997). Luminescence optical tomography of dense scattering media.Journal of the Optical Society of America A,14, 288–299.CrossRefGoogle Scholar
  24. Chang, J., Graber, H. L., Koo, P. C., Aronson, R., Barbour, S. L., &Barbour, R. L. (1997). Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources.IEEE Transactions on Medical Imaging,16, 68–77.PubMedCrossRefGoogle Scholar
  25. Churchland, P. S., &Sejnowski, T. J. (1988). Perspectives in cognitive neuroscience.Science,242, 741–745.PubMedCrossRefGoogle Scholar
  26. Clark, V. P., &Hillyard, S. A. (1996). Spatial selective attention affects early extra-striate but not striate components of the visual evoked potential.Journal of Cognitive Neuroscience,8, 387–402.CrossRefGoogle Scholar
  27. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., &Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task.Nature,386, 604–608.PubMedCrossRefGoogle Scholar
  28. Cohen, L. B. (1972). Changes in neuron structure during action potential propogation and synaptic transmission.Physiological Review,53, 373–417.Google Scholar
  29. Coles, M. G. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition.Psychophysiology,26, 251–269.PubMedCrossRefGoogle Scholar
  30. Cooper, C. E., Elwell, C. E., Meek, J. H., Matcher, S. J., Wyatt, J. S., Cope, M., &Delpy, D. T. (1996). The noninvasive measurement of absolute cerebral deoxy-hemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy.Pediatric Research,39, 32–38.PubMedCrossRefGoogle Scholar
  31. Cope, M., &Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation of newborn infants by near infra-red transillumination.Medical & Biological Engineering & Computing,26, 289–294.CrossRefGoogle Scholar
  32. Corbetta, M., Shulman, G. L., Miezin, F. M., &Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction.Science,270, 802–805.PubMedCrossRefGoogle Scholar
  33. Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory.Nature,386, 608–611.PubMedCrossRefGoogle Scholar
  34. Dale, A. M., &Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI.Human Brain Mapping,5, 329–340.PubMedCrossRefGoogle Scholar
  35. de Jong, R., Wierda, M., Mulder, G., &Mulder, L. J. (1988). Use of partial stimulus information in response processing.Journal of Experimental Psychology: Human Perception & Performance,14, 682–692.CrossRefGoogle Scholar
  36. DeYoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D., &Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex.Proceedings of the National Academy of Sciences,93, 2382–2386.CrossRefGoogle Scholar
  37. Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H., Chichilnisky, E. J., &Shadlen, M. N. (1994). fMRI of human visual cortex [letter].Nature,369, 525. [Published erratum appears inNature, 1994,370, 106.]PubMedCrossRefGoogle Scholar
  38. Ernst, T., &Hennig, J. (1994). Observation of a fast response in functional MR.Magnetic Resonance in Medicine,32, 146–149.PubMedCrossRefGoogle Scholar
  39. Fabiani, M.,Gratton, G., &Coles, M. G. H. (in press). Event-related brain potentials. In J. Cacioppo, L. Tassinary, & G. Berntson (Eds.),Handbook of psychophysiology. Cambridge: Cambridge University Press.Google Scholar
  40. Fabiani, M., Gratton, G., &Corballis, P. M. (1996). Non-invasive NIR optical imaging of human brain function with sub-second temporal resolution.Journal of Biomedical Optics,1, 387–398.CrossRefGoogle Scholar
  41. Federico, P., Borg, S. G., Salkauskus, A. G., &MacVicar, B. A. (1994). Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig.Neuroscience,58, 461–480.PubMedCrossRefGoogle Scholar
  42. Fiez, J. A., Raife, E. A., Schwarz, J., Balota, D. A., Raichle, M. E., &Petersen, S. E. (1996). Functional anatomical studies of the shortterm maintenance of verbal information.Journal of Neuroscience,16, 808–822.PubMedGoogle Scholar
  43. Fox, P. T., &Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.Proceedings of the National Academy of Sciences,83, 1140–1144.CrossRefGoogle Scholar
  44. Frahm, J., Bruhn, H., Merboldt, K. D., &Hänicke, W. (1992). Dynamic MR imaging of human brain oxygenation during rest and photic stimulation.Journal of Magnetic Resonance Imaging,2, 501–505.PubMedCrossRefGoogle Scholar
  45. Frahm, J., Merboldt, K. D., Hänicke, W., Kleinschmidt, A., &Boecker, H. (1994). Brain or vein-Oxygenation or flow? On signal physiology in functional MRI of human brain activation.NMR in Biomedicine,7, 45–53.PubMedCrossRefGoogle Scholar
  46. Frostig, R. D. (1994). What does in vivo optical imaging tell us about the primary visual cortex in primates? In A. Peters & K. S. Rockland (Eds.),Cerebral cortex (Vol. 10, pp. 331–358). New York: Plenum.Google Scholar
  47. Frostig, R. D., Lieke, E. E., Ts’o, D. Y., &Grinvald, A. (1990). Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals.Proceedings of the National Academy of Sciences,87, 6082–6086.CrossRefGoogle Scholar
  48. Gardner, H. (1985).The mind’s new science: A history of the cognitive revolution. New York: BasicBooks.Google Scholar
  49. Gazzaniga, M. S. (Ed.) (1995).The cognitive neurosciences. Cambridge, MA: MIT Press.Google Scholar
  50. Gazzaniga, M. S., Ivry, R., &Mangun, G. R. (1998).Cognitive neuroscience: The biology of the mind. New York: Norton.Google Scholar
  51. Gevins, A. (1996). Electrophysiological imaging of brain function. In A. W. Toga & J. C. Mazziotta (Eds.),Brain mapping: The methods (pp. 259–276). San Diego, CA: Academic Press.Google Scholar
  52. Gratton, E.,Gratton, G.,Fabiani, M., &Corballis, P. M. (1996). Detection of brain activity using time-resolved near infrared techniques. InProceedings of the Fifth International Conference: Peace Through Mind-Brain Science (pp. 214–223).Google Scholar
  53. Gratton, E., Jameson, D. M., Rosato, N., &Weber, G. (1984). Multifrequency cross-correlation phase fluorometer using synchrotron radiation.Reviews of Scientific Instrumentation,55, 486–494.CrossRefGoogle Scholar
  54. Gratton, E., &Limkeman, M. (1983). A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution.Biophysical Journal,44, 315–324.PubMedCrossRefGoogle Scholar
  55. Gratton, G. (1997). Attention and probability effects in the human occipital cortex: An optical imaging study.NeuroReport,8, 1749–1753.PubMedCrossRefGoogle Scholar
  56. Gratton, G., Coles, M. G., Sirevaag, E. J., Eriksen, C. W., &Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis.Journal of Experimental Psychology: Human Perception & Performance,14, 331–344.CrossRefGoogle Scholar
  57. Gratton, G., Corballis, P. M., Cho, E., Fabiani, M., &Hood, D. (1995). Shades of gray matter: Noninvasive optical images of human brain responses during visual stimulation.Psychophysiology,32, 505–509.PubMedCrossRefGoogle Scholar
  58. Gratton, G., Corballis, P. M., &Jain, S. (1997). Hemispheric organization of visual memories.Journal of Cognitive Neuroscience,9, 92–104.CrossRefGoogle Scholar
  59. Gratton, G., Fabiani, M., Corballis, P. M., Hood, D., Goodman, M. R., Hirsch, J., Kim, K., Friedman, D., &Gratton, E. (1997). Non-invasive optical measures of localized neuronal activity in the human occipital cortex.NeuroImage,6, 168–180.PubMedCrossRefGoogle Scholar
  60. Gratton, G.,Fabiani, M., &DeSoto, M. C. (1998). The time course of response-related brain activity in a choice reaction time task: Comparison of optical and electrophysiological measures.NeuroImage,7, S688.Google Scholar
  61. Gratton, G., Fabiani, M., Friedman, D., Franceschini, M. A., Fantini, S., &Gratton, E. (1995). Rapid changes of optical parameters in the human brain during a tapping task.Journal of Cognitive Neuroscience,7, 446–456.CrossRefGoogle Scholar
  62. Gratton, G., Fabiani, M., Goodman-Wood, M. R., &DeSoto, M. C. (1998). Memory-driven processing in human medial occipital cortex: An event-related optical signal (EROS) study.Psychophysiology,35, 348–351.PubMedCrossRefGoogle Scholar
  63. Gratton, G., Maier, J. S., Fabiani, M., Mantulin, W. W., &Gratton, E. (1994). Feasibility of intracranial near-infrared optical scanning.Psychophysiology,31, 211–215.PubMedCrossRefGoogle Scholar
  64. Gray, C. M., Konig, P., Engel, A. K., &Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature,338, 334–337.PubMedCrossRefGoogle Scholar
  65. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., &Wiesel, T. N. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals.Nature,324, 361–364.PubMedCrossRefGoogle Scholar
  66. Hackley, S. A. (1993). An evaluation of the automaticity of sensory processing using event-related potentials and brain-stem reflexes.Psychophysiology,30, 415–428.PubMedCrossRefGoogle Scholar
  67. Hackley, S. A., &Valle-Inclán, F. (1998). Autonomic alerting does not speed late motoric processes in a reaction time task.Nature,391, 786–788.PubMedCrossRefGoogle Scholar
  68. Haglund, M. M. (1997). Intraoperative optical imaging of epileptiform and functional activity.Neurosurgery Clinics of North America,8, 413–420.PubMedGoogle Scholar
  69. Haglund, M. M., Ojemann, G. A., &Hochman, D. W. (1992). Optical imaging of epileptiform and functional activity in human cerebral cortex.Nature,358, 668–671.PubMedCrossRefGoogle Scholar
  70. Hari, R., &Lounasmaa, O. V. (1989). Recording and interpretation of cerebral magnetic fields.Science,244, 432–436.PubMedCrossRefGoogle Scholar
  71. Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Munte, T. F., Gos, A., Scherg, M., Johannes, S., Hundeshagen, H., Gazzaniga, M. S., &Hillyard, S. A. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans.Nature,372, 543–546.PubMedCrossRefGoogle Scholar
  72. Hill, D. K., &Keynes, R. D. (1949). Opacity changes in stimulated nerve.Journal of Physiology,108, 278–281.Google Scholar
  73. Hirth, C., Obrig, H., Valdueza, J., Dirnagl, U., &Villringer, A. (1997). Simultaneous assessment of cerebral oxygenation and hemodynamics during a motor task: A combined near infrared and transcranial Doppler sonography study.Advances in Experimental Medicine & Biology,411, 461–469.Google Scholar
  74. Hock, C., Villringer, K., Muller-Spahn, F., Wenzel, R., Heekeren, H., Schuh-Hofer, S., Hofmann, M., Minoshima, S., Schwaiger, M., Dirnagl, U., &Villringer, A. (1997). Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS)-Correlation with simultaneous rCBF-PET measurements.Brain Research,755, 293–303.PubMedCrossRefGoogle Scholar
  75. Hoshi, Y., &Tamura, M. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity.Journal of Applied Physiology,75, 1842–1846.PubMedGoogle Scholar
  76. Hubel, D. H., &Wiesel, T. N. (1979). Brain mechanisms of vision.Scientific American,241 (3), 150–162.PubMedCrossRefGoogle Scholar
  77. Ishimaru, A. (1978).Wave propagation and scattering in random media (Vol. 1). New York: Academic Press.Google Scholar
  78. Javitt, D. C., Schroeder, C. E., Steinschneider, M., Arezzo, J. C., &Vaughan, H. G., Jr. (1992). Demonstration of mismatch negativity in the monkey.Electroencephalography & Clinical Neurophysiology,83, 87–90.CrossRefGoogle Scholar
  79. Javitt, D. C., Steinschneider, M., Schroeder, C. E., Vaughan, H. G., &Arezzo, J. C. (1994). Detection of stimulus deviance within primate primary auditory cortex: Intracortical mechanisms of mismatch negativity (MMN) generation.Brain Research,667, 192–200.PubMedCrossRefGoogle Scholar
  80. Jiang, H., Paulsen, K. D., &Osterberg, U. L. (1996). Optical image reconstruction using DC data: Simulations and experiments.Physics in Medicine & Biology,41, 1483–1498.CrossRefGoogle Scholar
  81. Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.Science,198, 1264–1267.PubMedCrossRefGoogle Scholar
  82. Johnson, M. K., Nolde, S. F., Mather, M., Kounios, J., Schacter, D. L., &Curran, T. (1997). The similarity of brain activity associated with true and false recognition memory depends on test format.Psychological Science,8, 250–257.CrossRefGoogle Scholar
  83. Kato, T., Kamei, A., Takashima, S., &Ozaki, T. (1993). Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy.Journal of Cerebral Blood Flow & Metabolism,13, 516–520.Google Scholar
  84. Kelley, W. M., Buckner, R. L., Miezin, F. M., Raichle, M. E., Cohen, N. J., &Petersen, S. E. (1998). Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding.Neuron,20, 927–936.PubMedCrossRefGoogle Scholar
  85. Kolb, B., &Whishaw, I. Q. (1996).Fundamentals of human neuropsychology (4th ed.). New York: W. H. Freeman.Google Scholar
  86. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R., Cheng, H.-M., Brady, T. J., &Rosen, B. R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.Proceedings of the National Academy of Sciences,89, 5675–5679.CrossRefGoogle Scholar
  87. Lee, A. T., Glover, G. H., &Meyer, C. H. (1995). Discrimination of large venous vessels in time-course spiral blood-oxygen-leveldependent magnetic-resonance functional neuroimaging.Magnetic Resonance in Medicine,33, 745–754.PubMedCrossRefGoogle Scholar
  88. Loftus, E. F., &Pickrell, J. E. (1995). The formation of false memories.Psychiatric Annals,25, 720–725.Google Scholar
  89. Lorente de Nó, R. (1947). Action potential of the motoneurons of the hypoglossus nucleus.Journal of Cellular & Comparative Physiology,29, 207–287.CrossRefGoogle Scholar
  90. Lu, Z. L., Williamson, S. J., &Kaufman, L. (1992). Behavioral lifetime of human auditory sensory memory predicted by physiological measures.Science,258, 1668–1670.PubMedCrossRefGoogle Scholar
  91. Malonek, D., &Grinvald, A. (1996). Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: Implications for functional brain mapping.Science,272, 551–554.PubMedCrossRefGoogle Scholar
  92. Malonek, D., Tootell, R. B., &Grinvald, A. (1994). Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT.Proceedings of the Royal Society of London: Series B,258, 109–119.CrossRefGoogle Scholar
  93. Marr, D. (1982).Vision. New York: W. H. Freeman.Google Scholar
  94. McCarthy, G., &Wood, C. C. (1987). Intracranial recordings of endogenous ERPs in humans.Electroencephalography & Clinical Neurophysiology,39, 331–337.Google Scholar
  95. Meek, J. H., Elwell, C. E., Khan, M. J., Romaya, J., Wyatt, J. S., Delpy, D. T., &Zeki, S. (1995). Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy.Proceedings of the Royal Society of London: Series B,261, 351–356.CrossRefGoogle Scholar
  96. Menon, V., Freeman, W. J., Cutillo, B. A., Desmond, J. E., Ward, M. F., Bressler, S. L., Laxer, K. D., Barbaro, N., &Gevins, A. S. (1996). Spatio-temporal correlations in human gamma band electrocorticograms.Electroencephalography & Clinical Neurophysiology,98, 89–102. [Published erratum appears inElectroencephalography & Clinical Neurophysiology, 1996,98, 228.]CrossRefGoogle Scholar
  97. Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory.Annals of Neurology,28, 597–613.PubMedCrossRefGoogle Scholar
  98. Meyer, D. E., Osman, A. M., Irwin, D. E., &Yantis, S. (1988). Modern mental chronometry.Biological Psychology,26, 3–68.PubMedCrossRefGoogle Scholar
  99. Miltner, W., Johnson, R., Jr., Simpson, G. V., &Ruchkin, D. S. (1994). A test of brain electrical source analysis (BESA): A simulation study.Electroencephalography & Clinical Neurophysiology,91, 295–310.CrossRefGoogle Scholar
  100. Näätänen, R. (1992).Attention and brain function. Hillsdale, NJ: Erlbaum.Google Scholar
  101. Nunez, P. L. (1981).Electric fields of the brain. New York: Oxford University Press.Google Scholar
  102. Nyberg, L., Cabeza, R., &Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model.Psychonomic Bulletin & Review,3, 135–148.Google Scholar
  103. Obrig, H., Wolf, T., Doge, C., Hulsing, J. J., Dirnagl, U., &Villringer, A. (1996). Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured by near-infrared spectroscopy.Advances in Experimental Medicine & Biology,388, 219–224.Google Scholar
  104. Okada, E., Firbank, M., &Delpy, D. T. (1995). The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy.Physics in Medicine & Biology,40, 2093–2108.CrossRefGoogle Scholar
  105. Okada, Y. C., Williamson, S. J., &Kaufman, L. (1982). Magnetic field of the human sensorimotor cortex.International Journal of Neuroscience,17, 33–38.PubMedCrossRefGoogle Scholar
  106. Paulsen, K. D., &Jiang, H. (1995). Spatially varying optical property reconstruction using a finite element diffusion equation approximation.Medical Physics,22, 691–701.PubMedCrossRefGoogle Scholar
  107. Petersen, S. E., Corbetta, M., Miezin, F. M., &Shulman, G. L. (1994). PET studies of parietal involvement in spatial attention: Comparison of different task types.Canadian Journal of Experimental Psychology,48, 319–338.PubMedGoogle Scholar
  108. Posner, M. I. (Ed.) (1989).Foundations of cognitive science. Cambridge, MA: MIT Press.Google Scholar
  109. Posner, M. I., &Raichle, M. E. (1994).Images of mind. New York: Scientific American Books.Google Scholar
  110. Raichle, M. E. (1986). Neuroimaging.Trends in Neurosciences,9, 525–529.CrossRefGoogle Scholar
  111. Raichle, M. E. (1994, April). Visualizing the mind.Scientific American,270, 58–64.PubMedCrossRefGoogle Scholar
  112. Rector, D. M., Poe, G. R., Kristensen, M. P., &Harper, R. M. (1995). Imaging the dorsal hippocampus: Light reflectance relationships to electroencephalographic patterns during sleep.Brain Research,696, 151–160.PubMedCrossRefGoogle Scholar
  113. Rector, D. M., Poe, G. R., Kristensen, M. P., &Harper, R. M. (1997). Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation.Journal of Neurophysiology,78, 1707–1713.PubMedGoogle Scholar
  114. Rees, G., Frith, C. D., &Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task.Science,278, 1616–1619.PubMedCrossRefGoogle Scholar
  115. Reppas, J. B., Niyogi, S., Dale, A. M., Sereno, M. I., &Tootell, R. B. (1997). Representation of motion boundaries in retinotopic human visual cortical areas.Nature,388, 175–179.PubMedCrossRefGoogle Scholar
  116. Riehle, A., Gruen, S., Diesmann, M., &Aertsen, A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function.Science,278, 1950–1953.PubMedCrossRefGoogle Scholar
  117. Riehle, A., &Requin, J. (1993). The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex.Behavioural Brain Research,53, 35–49.PubMedCrossRefGoogle Scholar
  118. Ritter, W., Deacon, D., Gomes, H., Javitt, D. C., &Vaughan, H. G., Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review.Ear & Hearing,16, 52–67.CrossRefGoogle Scholar
  119. Roediger, H. L., III (1996). Memory illusions.Journal of Memory & Language,35, 76–100.CrossRefGoogle Scholar
  120. Roediger, H. L., III, &McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 803–814.CrossRefGoogle Scholar
  121. Roelfsema, P. R., Engel, A. K., Konig, P., &Singer, W. (1996). The role of neuronal synchronization in response selection: A biologically plausible theory of structured representations in the visual cortex.Journal of Cognitive Neuroscience,8, 603–625.CrossRefGoogle Scholar
  122. Roy, C. S., &Sherrington, C. S. (1890). On the regulation of the blood supply to the brain.Journal of Physiology,11, 85–108.PubMedGoogle Scholar
  123. Rugg, M. D. (Ed.) (1997).Cognitive neuroscience. Cambridge, MA: MIT Press.Google Scholar
  124. Rugg, M. D., &Coles, M. G. H. (Eds.) (1995).Electrophysiology of mind: Event-related brain potentials and cognition. Oxford: Oxford University Press.Google Scholar
  125. Sanders, A. F. (1981). Stage analysis of reaction processes. In G. E. Stelmack & J. Requin (Eds.),Tutorials in motor behavior (pp. 331–354). Amsterdam: North-Holland.Google Scholar
  126. Schacter, D. L., Reiman, E., Curran, T., Yun, L. S., Bandy, D., Mc-Dermott, K. B., &Roediger, H. L., III (1996). Neuroanatomical correlates of veridical and illusory recognition memory: Evidence from positron emission tomography.Neuron,17, 267–274.PubMedCrossRefGoogle Scholar
  127. Scherg, M., Vajsar, J., &Picton, T. W. (1989). A source analysis of the human auditory evoked potentials.Journal of Cognitive Neuroscience,1, 336–355.CrossRefGoogle Scholar
  128. Scherg, M., &Von Cramon, D. (1986). Evoked dipole source potentials of the human auditory cortex.Electroencephalography & Clinical Neurophysiology,65, 344–360.CrossRefGoogle Scholar
  129. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J.W., Brady, T. J., Rosen, B. R., &Tootell, R. B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging.Science,268, 889–893.PubMedCrossRefGoogle Scholar
  130. Singer, W. (1994). Coherence as an organizing principle of cortical functions. In O. Sporns & G. Tononi (Eds.),Selectionism and the brain (Vol. 37, pp. 153–183). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  131. Skarda, C. A., &Freeman, W. J. (1987). How brains make chaos in order to make sense of the world.Behavioral & Brain Sciences,10, 161–195.CrossRefGoogle Scholar
  132. Squire, L. R. (1989). Mechanisms of memory. In K. L. Kelner & D. E. Koshland (Eds.),Molecules to models: Advances in neuroscience (chap. 40). Washington, DC: AAAS.Google Scholar
  133. Stepnoski, R. A., La Porta, A., Raccuia-Behling, F., Blonder, G. E., Slusher, R. E., &Kleinfeld, D. (1991). Noninvasive detection of changes in membrane potential in cultured neurons by light scattering.Proceedings of the National Academy of Sciences,88, 9382–9386.CrossRefGoogle Scholar
  134. Sternberg, S. (1966). High-speed scanning in human memory.Science,153, 652–654.PubMedCrossRefGoogle Scholar
  135. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. In W. G. Koster (Ed.),Attention and performance II (pp. 276–315). Amsterdam: North-Holland.Google Scholar
  136. Stevenson, D. K., Vreman, H. J., &Benaron, D. A. (1996). Evaluation of neonatal jaundice: Monitoring the transition in bilirubin metabolism.Journal of Perinatology,16 (3, Pt. 2), S62–67.PubMedGoogle Scholar
  137. Taddeucci, A., Martelli, F., Barilli, M., Ferrari, M., &Zaccanti, G. (1996). Optical properties of brain tissue.Journal of Biomedical Optics,1, 117–123.CrossRefGoogle Scholar
  138. Tamura, M., Hoshi, Y., &Okada, F. (1997). Localized near-infrared spectroscopy and functional optical imaging of brain activity.Philosophical Transactions of the Royal Society of London: Series B,352, 737–742.CrossRefGoogle Scholar
  139. Thatcher, R. W., Toro, C., Pflieger, M. E., &Hallett, M. (1994). Human neural network dynamics using multimodal registration of EEG, PET, and MRI. In M. Hallett, T. A. Zeffiro, E. R. John, & M. Huerta (Eds.),Functional neuroimaging: Technical foundations (pp. 269–278). San Diego, CA: Academic Press.Google Scholar
  140. Tiitinen, H., Alho, K., Huotilainen, M., Ilmoniemi, R. J., Simola, J., &Näätänen, R. (1993). Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity.Psychophysiology,30, 537–540.PubMedCrossRefGoogle Scholar
  141. Toga, A. W., &Mazziotta, J. C. (Eds.) (1996).Brain mapping: The methods. San Diego, CA: Academic Press.Google Scholar
  142. Tootell, R. B., Dale, A. M., Sereno, M. I., &Malach, R. (1996). New images from human visual cortex.Trends in Neurosciences,19, 481–489.PubMedCrossRefGoogle Scholar
  143. Tulving, E., Kapur, S., Craik, F. I., Moscovitch, M., &Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings.Proceedings of the National Academy of Sciences,91, 2016–2020.CrossRefGoogle Scholar
  144. Turner, R. (1995). Functional mapping of the human brain with magnetic resonance imaging.Seminars in the Neurosciences,7, 179–194.CrossRefGoogle Scholar
  145. Villringer, A. (1997). Understanding functional neuroimaging methods based on neurovascular coupling.Advances in Experimental Medicine & Biology,413, 177–193.Google Scholar
  146. Villringer, A., &Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function.Trends in Neurosciences,20, 435–442.PubMedCrossRefGoogle Scholar
  147. Villringer, A., &Dirnagl, U. (1995). Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging.Cerebrovascular & Brain Metabolism Reviews,7, 240–276.Google Scholar
  148. Wang, G., Tanaka, K., &Tanifuji, M. (1996). Optical imaging of functional organization in the monkey inferotemporal cortex.Science,272, 1665–1668.PubMedCrossRefGoogle Scholar
  149. Weinberg, H., Cheyne, D., &Crisp, D. (1990). Electroencephalographic and magnetoencephalographic studies of motor function.Advances in Neurology,54, 193–205.PubMedGoogle Scholar
  150. Wenzel, R., Obrig, H., Ruben, J., Villringer, K., Thiel, A., Bernarding, J., Dirnagl, U., &Villringer, A. (1996). Cerebral blood oxygenation changes induced by visual stimulation in humans.Journal of Biomedical Optics,1, 399–404.CrossRefGoogle Scholar
  151. Wilson, B. C., Patterson, M. S., Flock, S. T., &Wyman, D. R. (1989). Tissue optical properties in relation to light propagation models and in vivo dosimetry. In B. Chance (Ed.),Photon migration in tissues (pp. 25–42). New York: Plenum.Google Scholar
  152. Winkler, I., Tervaniemi, M., Huotilainen, M., Ilmoniemi, R., Ahonen, A., Salonen, O., Standertskjold-Nordenstam, C. G., &Näätänen, R. (1995). From objective to subjective: Pitch representation in the human auditory cortex.NeuroReport,6, 2317–2320.PubMedCrossRefGoogle Scholar
  153. Zhu, W., Wang, Y., Deng, Y., Yao, Y., &Barbour, R. L. (1997). A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography.IEEE Transactions on Medical Imaging,16, 210–217.PubMedCrossRefGoogle Scholar
  154. Zhu, W., Wang, Y., Yao, Y., Chang, J., Graber, H. L., &Barbour, R. L. (1997). Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method.Journal of the Optical Society of America A,14, 799–807.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 1998

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MissouriColumbia

Personalised recommendations