Absolute memory for musical pitch: Evidence from the production of learned melodies

Abstract

Evidence for the absolute nature of long-term auditory memory is provided by analyzing the production of familiar melodies. Additionally, a two-component theory of absolute pitch is presented, in which this rare ability is conceived as consisting of a more common ability,pitch memory, and a separate, less common ability,pitch labeling. Forty-six subjects sang two different popular songs, and their productions were compared with the actual pitches used in recordings of those songs. Forty percent of the subjects sang the correct pitch on at least one trial; 12% of the subjects hit the correct pitch on both trials, and 44% came within two semitones of the correct pitch on both trials. The results show a convergence with previous studies on the stability of auditory imagery and latent absolute pitch ability; the results further suggest that individuals might possess representations of pitch that are more stable and accurate than previously recognized.

References

  1. Attneave, F., &Olson, R. K. (1971). Pitch as a medium: A new approach to psychophysical scaling.American Journal of Psychology,84, 147–166.

    Article  PubMed  Google Scholar 

  2. Bachem, A. (1954). Time factors in relative and absolute pitch determination.Journal of the Acoustical Society of America,26, 751–753.

    Article  Google Scholar 

  3. Baggaley, J. (1974). Measurement of absolute pitch.Psychology of Music,2(2), 11–17.

    Article  Google Scholar 

  4. Batschelet, E. (1981).Circular statistics for biology. London: Academic Press.

    Google Scholar 

  5. Bharucha, J. J. (1992). Tonality and learnability. In M. R. Jones & S. Holleran (Eds.),Cognitive bases of musical communication (pp. 213–223). Washington, DC: American Psychological Association.

    Google Scholar 

  6. Bishop, Y. M. M., Fienberg, S. E., &Holland, P. W. (1975).Discrete multivariate analysis: Theory and practice. Cambridge, MA: MIT Press.

    Google Scholar 

  7. Bower, G. H. (1967). A multicomponent theory of the memory trace. In K. W. Spence & J. T. Spence (Eds.),The psychology of learning and motivation: Advances in research and theory (Vol. 1, pp. 229–325). New York: Academic Press.

    Google Scholar 

  8. Campbell, W. C., &Heller, J. (1979). Convergence procedures for investigating music listening tasks.Bulletin of the Council for Research in Music Education,59, 18–23.

    Google Scholar 

  9. Cook, P. R. (1991). Identification of control parameters in an articulator vocal tract model, with applications to the synthesis of singing (Doctoral dissertation, Stanford University).Dissertation Abstracts International,52, 419B. (University Microfilms No. 91-15, 756)

    Google Scholar 

  10. Cook, P. R. (1992).Spectro [Freeware]. Stanford, CA: Stanford University. (Available by anonymous ftp from ccrma.stanford.edu)

    Google Scholar 

  11. Corliss, E. L. (1973). Remark on “fixed-scale mechanism of absolute pitch.”Journal of the Acoustical Society of America,53, 1737–1739.

    Article  PubMed  Google Scholar 

  12. Dennett, D. C. (1991).Consciousness explained. Boston: Little, Brown.

    Google Scholar 

  13. Deutsch, D. (1969). Music recognition.Psychological Review,76, 300–307.

    Article  PubMed  Google Scholar 

  14. Deutsch, D. (1972). Octave generalization and tune recognition.Perception & Psychophysics,11, 411–412.

    Google Scholar 

  15. Deutsch, D. (1978). Octave generalization and melody identification.Perception & Psychophysics,23, 91–92.

    Google Scholar 

  16. Deutsch, D. (1991). The tritone paradox: An influence of language on music perception.Music Perception,8, 335–347.

    Google Scholar 

  17. Deutsch, D. (1992). The tritone paradox: Implications for the representation and communication of pitch structure. In M. R. Jones & S. Holleran (Eds.),Cognitive bases of musical communication (pp. 115–138). Washington, DC: American Psychological Association.

    Google Scholar 

  18. Deutsch, D., Kuyper, W. L., &Fisher, Y. (1987). The tritone paradox: Its presence and form of distribution in a general population.Music Perception,5, 79–92.

    Google Scholar 

  19. Deutsch, D., Moore, F. R., &Dolson, M. (1986). The perceived height of octave-related complexes.Journal of the Acoustical Society of America,80, 1346–1353.

    Article  PubMed  Google Scholar 

  20. Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies.Psychological Review,85, 341–354.

    Article  Google Scholar 

  21. Dowling, W. J. (1982). Melodic information processing and its development. In D. Deutsch (Ed.),The psychology of music (pp. 413–429). New York: Academic Press.

    Google Scholar 

  22. Dowling, W. J., &Bartlett, J. C. (1981). The importance of interval information in long-term memory for melodies.Psychomusicology,1, 30–49.

    Google Scholar 

  23. Fisher, N. I. (1993).Statistical analysis of circular data. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Halpern, A. R. (1988). Mental scanning in auditory imagery for songs.Journal of Experimental Psychology: Learning, Memory, & Cognition,14, 434–443.

    Article  Google Scholar 

  25. Halpern, A. R. (1989). Memory for the absolute pitch of familiar songs.Memory & Cognition,17, 572–581.

    Google Scholar 

  26. Handel, S. (1989).Listening: An introduction to the perception of auditory events. Cambridge, MA: MIT Press.

    Google Scholar 

  27. Hanson, H. M. (1959). Effects of discrimination training on stimulus generalization.Journal of Experimental Pscyhology,58, 321–334.

    Article  Google Scholar 

  28. Hayman, C. A. G., &Tulving, E. (1989). Contingent dissociation between recognition and fragment completion: The method of triangulation.Journal of Experimental Psychology: Learning, Memory, & Cognition,15, 228–240.

    Article  Google Scholar 

  29. Idson, W. L., &Massaro, D. W. (1978). A bidimensional model of pitch in the recognition of melodies.Perception & Psychophysics,24, 551–565.

    Article  Google Scholar 

  30. Kallman, H. J., &Massaro, D. W. (1979). Tone chroma is functional in melody recognition.Perception & Psychophysics,26, 32–36.

    Google Scholar 

  31. Kohler, W. (1938). Simple structural function in the chimpanzee and the chicken. In W. D. Ellis (Ed.),A sourcebook of Gestalt psychology (pp. 217–227). New York: Harcourt, Brace & World. (Original work published 1918)

    Google Scholar 

  32. Kolb, B., &Whishaw, I. Q. (1990).Fundamentals of human neuropsychology (3rd ed.). New York: W. H. Freeman.

    Google Scholar 

  33. Krumhansl, C. L. (1990).Cognitive foundations of musical pitch. New York: Oxford University Press.

    Google Scholar 

  34. Levitin, D. J. (1994).Limitations of the Kolmogorov-Smirnov test: The need for circular statistics in psychology. (Tech. Rep. No 94-7). Eugene, OR: University of Oregon, Institute of Cognitive & Decision Sciences.

    Google Scholar 

  35. Lockhead, G. R., &Byrd, R. (1981). Practically perfect pitch.Journal of the Acoustical Society of America,70, 387–389.

    Article  Google Scholar 

  36. Luria, A. R. (1968).The mind of a mnemonist. New York: Basic Books.

    Google Scholar 

  37. Massaro, D. W. (1972). Perceptual images, processing time, and perceptual units in auditory perception.Psychological Review,79, 124–145.

    Article  PubMed  Google Scholar 

  38. Miyazaki, K. (1988). Musical pitch identification by absolute pitch possessors.Perception & Psychophysics,44, 501–512.

    Google Scholar 

  39. Miyazaki, K. (1990). The speed of musical pitch identification by absolute pitch possessors.Music Perception,8, 177–188.

    Google Scholar 

  40. Miyazaki, K. (1993). Absolute pitch as an inability: Identification of musical intervals in a tonal context.Music Perception,11, 55–72.

    Google Scholar 

  41. Moore, B. C. J. (1989).An introduction to the psychology of hearing (3rd ed.). London: Academic Press.

    Google Scholar 

  42. Murry, T. (1990). Pitch-matching accuracy in singers and nonsingers.Journal of Voice,4, 317–321.

    Article  Google Scholar 

  43. Nelson, T. O. (1984). A comparison of current measures of the accuracy of feeling-of-knowing predictions.Psychological Bulletin,95, 109–133.

    Article  PubMed  Google Scholar 

  44. Pierce, J. R. (1983).The science of musical sound. New York: W. H. Freeman.

    Google Scholar 

  45. Profita, J., &Bidder, T. G. (1988). Perfect pitch.American Journal of Medical Genetics,29, 763–771.

    Article  PubMed  Google Scholar 

  46. Rakowski, A., &Morawska-Büngeler, M. (1987). In search of the criteria for absolute pitch.Archives of Acoustics,12, 75–87.

    Google Scholar 

  47. Reese, H. W. (1968).The perception of stimulus relations. New York: Academic Press.

    Google Scholar 

  48. Shepard, R. N. (1964). Circularity in judgments of relative pitch.Journal of the Acoustical Society of America,36, 2346–2353.

    Article  Google Scholar 

  49. Shonle, J. I., &Horan, K. E. (1980). The pitch of vibrato tones.Journal of the Acoustical Society of America,67, 246–252.

    Article  PubMed  Google Scholar 

  50. Spence, K. W. (1937). The differential response in animals to stimuli varying within a single dimension.Psychological Review,44, 430–444.

    Article  Google Scholar 

  51. Stern, A. W. (1993).Natural pitch and the A440 scale. Unpublished manuscript, Stanford University, Center for Computer Research in Music and Acoustics, Stanford, CA.

    Google Scholar 

  52. Stromeyer, C. F., III (1970, November). Eidetikers.Psychology Today, pp. 76–80.

  53. Sundberg, J. (1987).The science of the singing voice. Dekalb, IL: Northern Illinois University Press.

    Google Scholar 

  54. Takeuchi, A. H., &Hulse, S. H. (1993). Absolute pitch.Psychological Bulletin,113, 345–361.

    Article  PubMed  Google Scholar 

  55. Terhardt, E., &Seewan, M. (1983). Aural key identification and its relationship to absolute pitch.Music Perception,1, 63–83.

    Google Scholar 

  56. Terhardt, E., &Ward, W. D. (1982). Recognition of musical key: Exploratory study.Journal of the Acoustical Society of America,72, 26–33.

    Article  Google Scholar 

  57. Tsuzaki, M. (1992, February).Interference of preceding scales on absolute pitch judgment. Paper presented at the 2nd International Conference on Music Perception and Cognition, Los Angeles.

  58. Ward, W. D. (1990, May).Relative versus absolute pitch and the key of auralized melodies. Paper presented at the von Karajan Symposium, Vienna.

  59. Ward, W. D., &Burns, E. M. (1978). Singing without auditory feedback.Journal of Research in Singing & Applied Vocal Pedagogy,1, 24–44.

    Google Scholar 

  60. Ward, W. D., &Burns, E. M. (1982). Absolute pitch. In D. Deutsch (Ed.),The psychology of music (pp. 431–451). New York: Academic Press.

    Google Scholar 

  61. Zatorre, R. J., &Beckett, C. (1989). Multiple coding strategies in the retention of musical tones by possessors of absolute pitch.Memory & Cognition,17, 582–589.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Levitin.

Additional information

This research was supported by NSF Research Grant BNS 85-11685 to R. N. Shepard, by ONR Grant N-00014-89-J-3186 to the author, while the author held a National Defense Science and Engineering Graduate Fellowship, and by ONR Grant N-00014-89-3013 to M. I. Posner. The Center for Computer Research in Music and Acoustics at Stanford and the Department of Music at the University of Oregon generously provided essential equipment for the study.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Levitin, D.J. Absolute memory for musical pitch: Evidence from the production of learned melodies. Perception & Psychophysics 56, 414–423 (1994). https://doi.org/10.3758/BF03206733

Download citation

Keywords

  • Acoustical Society ofAmerica
  • Music Perception
  • Absolute Pitch
  • Target Tone
  • Auditory Imagery