Skip to main content

The hot hand fallacy and the gambler’s fallacy: Two faces of subjective randomness?

Abstract

The representativeness heuristic has been invoked to explain two opposing expectations—that random sequences will exhibit positive recency (the hot hand fallacy) and that they will exhibit negative recency (the gambler’s fallacy). We propose alternative accounts for these two expectations: (1) The hot hand fallacy arises from the experience of characteristic positive recency in serial fluctuations in human performance. (2) The gambler’s fallacy results from the experience of characteristic negative recency in sequences of natural events, akin to sampling without replacement. Experiment 1 demonstrates negative recency in subjects’ expectations for random binary outcomes from a roulette game, simultaneously with positive recency in expectations for another statistically identical sequence—the successes and failures of their predictions for the random outcomes. These findings fit our proposal but are problematic for the representativeness account. Experiment 2 demonstrates that sequence recency influences attributions that human performance or chance generated the sequence.

References

  • Adams, R. M. (1995). Momentum in the performance of professional tournament pocket billiards players.International Journal of Sport Psychology,26, 580–587.

    Google Scholar 

  • Ayton, P. (1998, September 19). Fallacy football.New Scientist,159, 52.

    Google Scholar 

  • Ayton, P., Hunt, A. J., &Wright, G. (1989). Psychological conceptions of randomness.Journal of Behavioral Decision Making,2, 221–238.

    Article  Google Scholar 

  • Ayton, P., Hunt, A. J., &Wright, G. (1991). Randomness and reality.Journal of Behavioral Decision Making,4, 222–226.

    Article  Google Scholar 

  • Bar-Hillel, M., &Wagenaar, W.-A. (1991). The perception of randomness.Advances in Applied Mathematics,12, 428–454.

    Article  Google Scholar 

  • Boynton D. M. (2003). Superstitious responding and frequency matching in the positive bias and gambler’s fallacy effects.Organizational Behavior & Human Decision Processes,91, 119–127.

    Article  Google Scholar 

  • Budescu, D. V. (1987). A Markov model for generation of random binary sequences.Journal of Experimental Psychology: Human Perception & Performance,13, 25–39.

    Article  Google Scholar 

  • Burns, B. D. (2003). When it is adaptive to follow streaks: Variability and stocks. In R. Alterman & D. Kirsh (Eds.),Proceedings of the Twenty-Fifth Annual Meeting of the Cognitive Science Society. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Burns, B. D. (2004). Heuristics as beliefs and as behaviors: The adaptiveness of the “hot hand”.Cognitive Psychology,48, 295–331.

    Article  PubMed  Google Scholar 

  • Burns, B. D., &Corpus, B. (2004). Randomness and inductions from streaks: “Gambler’s fallacy” versus “hot hand”.Psychonomic Bulletin & Review,11, 179–184.

    Google Scholar 

  • Burrows, B. L., &Talbot, R. F. (1985). Boycott, Botham and the exponential distribution.Teaching Statistics,7, 42–47.

    Article  Google Scholar 

  • Camerer, C. F. (1989). Does the basketball market believe in the “hot hand”.American Economic Review,79, 1257–1261.

    Google Scholar 

  • Clark, R. E., Manns, J. R., &Squire, L. R. (2001). Trace and delay eyeblink conditioning: Contrasting phenomena of declarative and nondeclarative memory.Psychological Science,12, 304–308.

    Article  PubMed  Google Scholar 

  • Clotfelter, C. T., &Cook, P. J. (1993). The “gambler’s fallacy” in lottery play.Management Science,39, 1521–1525.

    Article  Google Scholar 

  • Derks, P. L. (1962). The generality of the “conditioning axiom” in human binary prediction.Journal of Experimental Psychology,63, 538–545.

    Article  PubMed  Google Scholar 

  • Derks, P. L. (1963). Effect of run length on the gambler’s fallacy.Journal of Experimental Psychology,65, 213–214.

    Article  Google Scholar 

  • Dorsey-Palmateer, R., &Smith, G. (2004). Bowlers’ hot hands.The American Statistician,58, 38–45.

    Article  Google Scholar 

  • Edwards, W. (1961). Probability learning in 1,000 trials.Journal of Experimental Psychology,62, 385–394.

    Article  PubMed  Google Scholar 

  • Estes, W. K. (1964). Probability learning. In A. W. Melton (Ed.),Categories of human learning (pp. 89–128). New York: Academic Press.

    Google Scholar 

  • Falk, R. (1975). Perception of randomness. Doctoral dissertation (in Hebrew with English abstract). Jerusalem: Hebrew University.

  • Falk, R. (1981). The perception of randomness. InProceedings of the Fifth International Conference for the Psychology of Mathematics Education (pp. 222–229). Grenoble, France.

  • Falk, R., &Konold, C. (1994). Random means hard to digest.Focus on Learning Problems in Mathematics,16, 2–12.

    Google Scholar 

  • Falk, R., &Konold, C. (1997). Making sense of randomness: Implicit encoding as a basis for judgment.Psychological Review,104, 301–318.

    Article  Google Scholar 

  • Gilden, D. L., &Wilson, S. G. (1995). On the nature of streaks in signaldetection.Cognitive Psychology,28, 17–64.

    Article  PubMed  Google Scholar 

  • Gilden, D. L., &Wilson, S. G. (1996). Streaks in skilled performance.Psychonomic Bulletin & Review,2, 260–265.

    Google Scholar 

  • Gilovich, T. (1991). How we know what isn’t so: The fallibility of human reason in everyday life. New York: Free Press.

    Google Scholar 

  • Gilovich, T., Vallone, R., &Tversky, A. (1985). The hot hand in basketball: On the misperception of random sequences.Cognitive Psychology,17, 295–314.

    Article  Google Scholar 

  • Hooke, R. (1989). Basketball, baseball, and the null hypothesis.Chance: New Directions for Statistics & Computing,2, 35–37.

    Google Scholar 

  • Jarvik, M. E. (1951). Probability learning and a negative recency effect in the serial anticipation of alternative symbols.Journal of Experimental Psychology,41, 291–297.

    Article  PubMed  Google Scholar 

  • Kahneman, D., &Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.),Heuristics and biases: The psychology of intuitive judgment (pp. 49–81). New York: Cambridge University Press.

    Google Scholar 

  • Kahneman, D., &Tversky, A. (1972). Subjective probability: A judgment of representativeness.Cognitive Psychology,3, 430–454.

    Article  Google Scholar 

  • Laplace, P. S. de (1951). A philosophical essay on probabilities. New York: Dover. (Original work published 1796)

    Google Scholar 

  • Larkey, P. D., Smith, R. A., &Kadane, J. B. (1989). It’s okay to believe in the “hot hand”.Chance: New Directions for Statistics and Computing,2, 22–30.

    Google Scholar 

  • Lee, W. (1971). Decision theory and human behavior. New York: Wiley.

    Google Scholar 

  • Lopes, L. L. (1982). Doing the impossible: A note on induction and the experience of randomness.Journal of Experimental Psychology: Learning, Memory, & Cognition,8, 626–636.

    Article  Google Scholar 

  • Lopes, L. L., &Oden, G. (1987). Distinguishing between random and nonrandom events.Journal of Experimental Psychology: Learning, Memory, & Cognition,13, 392–400.

    Article  Google Scholar 

  • Neuringer, A. (1989). Can people behave randomly? The role of feedback.Journal of Experimental Psychology: General,115, 62–75.

    Article  Google Scholar 

  • Perruchet, P. (1985). A pitfall for the expectancy theory of human eyelid conditioning.Pavlovian Journal of Biological Sciences,20, 163–170.

    Google Scholar 

  • Pinker, S. (1997). How the mind works. New York: Norton.

    Google Scholar 

  • Smith, G. (2003). Horseshoe pitchers’ hot hands.Psychonomic Bulletin & Review,10, 753–758.

    Article  Google Scholar 

  • Sundali, J., Croson, R., & Gold, E. (2000, May) The gambler’s fallacy versus the hot hand: Empirical data from casinos.Seventh Conference on Behavioral Decision Research in Management. Tucson, Arizona.

  • Treisman, M., &Faulkner, A. (1990). Generation of random sequences by human subjects: Cognitive operations or psychophysical process?Journal of Experimental Psychology: General,116, 337–355.

    Article  Google Scholar 

  • Tversky, A., &Gilovich, T. (1989a). The cold facts about the “hot hand” in basketball.Chance: New Directions for Statistics & Computing,2, 16–21.

    Google Scholar 

  • Tversky, A., &Gilovich, T. (1989b). The “hot hand”: Statistical reality or cognitive illusion?Chance: New Directions for Statistics & Computing,2, 31–34.

    Google Scholar 

  • Wagenaar, W.-A. (1988).Paradoxes of gambling behavior. Hove, U.K.: Erlbaum.

    Google Scholar 

  • Wagenaar, W.-A., &Keren, G. (1988). Chance and luck are not the same.Journal of Behavioral Decision Making,1, 65–75.

    Article  Google Scholar 

  • Wardrop, R. L. (1995). Simpson’s paradox and the hot hand in basketball.The American Statistician,49, 24–28.

    Article  Google Scholar 

  • Wardrop, R. L. (1998). Basketball. In J. Bennett (Ed.),Statistics in sport (pp. 65–82). London: Arnold.

    Google Scholar 

  • Witte, R. S. (1964). Long-term effects of patterned reward schedules.Journal of Experimental Psychology,68, 588–594.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Ayton or Ilan Fischer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ayton, P., Fischer, I. The hot hand fallacy and the gambler’s fallacy: Two faces of subjective randomness?. Memory & Cognition 32, 1369–1378 (2004). https://doi.org/10.3758/BF03206327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BF03206327

Keywords

  • Roulette Wheel
  • Eyeblink Conditioning
  • Alternation Rate
  • Probability Learning
  • Eyeblink Response