Advertisement

Perception & Psychophysics

, Volume 61, Issue 7, pp 1241–1255 | Cite as

Attentional capacity is undifferentiated: Concurrent discrimination of form, color, and motion

  • Dale Kathleen Lee
  • Christof Koch
  • And Jochen BraunEmail author
Article

Abstract

We report a series of experiments on the concurrent discrimination of form, color, and motion attributes. All tasks involved joint discrimination of attributes, and positions and were highly demanding of attention. We quantified interference between concurrent discriminations by establishing the attention-operating characteristic. Interference was indistinguishable for similar and dissimilar task combinations (form-form, color-color, motion-motion, and color-form, color-motion, motion-color, and motion-form, respectively). These results suggest strongly that different visual discriminations draw on the same attentional capacity—in other words, that the capacity of visual attention is undifferentiated.

Keywords

Visual Search Color Discrimination Concurrent Task Central Task Attentional Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allport, D. A. (1971). Parallel encoding within and between elementary stimulus dimensions.Perception & Psychophysics,10, 104–108.Google Scholar
  2. Ben-Av, M. B., Sagi, D., &Braun, J. (1992). Visual attention and perceptual grouping.Perception & Psychophysics,52, 277–294.Google Scholar
  3. Bonnel, A-M., &Miller, J. (1994). Attentional effects on concurrent psychophysical discriminations: Investigations of a sample size model.Perception & Psychophysics,55, 162–179.Google Scholar
  4. Bonnel, A-M., &Prinzmetal, W. (1998). Dividing attention between the color and the shape of objects.Perception & Psychophysics,60, 113–124.Google Scholar
  5. Bonnel, A-M., Stein, J-F, &Bertucci, P. (1992). Does attention modulate the perception of luminance changes?Quarterly Journal of Experimental Psychology,44A, 601–626.Google Scholar
  6. Braun, J. (1994). Visual search among items of different salience: Removal of visual attention mimics a lesion in extrastriate area V4.Journal of Neuroscience,14, 554–567.PubMedGoogle Scholar
  7. Braun, J. (1998). Vision and attention: The role of training.Nature,393, 424–425. or]Braun, J., & Julesz, B. (1992, November). Early vision: Dichotomous or continuous? Paper presented at the annual meeting of the Psychonomic Society. St. Louis.CrossRefPubMedGoogle Scholar
  8. Braun, J., &Julesz, B. (1998). Withdrawing attention at little or no cost: Detection and discrimination tasks.Perception & Psychophysics,60, 1–23.Google Scholar
  9. Braun, J., &Sagi, D. (1990). Vision outside the focus of attention.Perception & Psychophysics,48, 45–58.Google Scholar
  10. Braun, J., &Sagi, D. (1991). Texture-based tasks are little affected by a second task which requires peripheral or central attentive fixation.Perception,20, 483–500.CrossRefPubMedGoogle Scholar
  11. Broadbent, D. E. (1971).Decision and stress. London: Academic Press.Google Scholar
  12. Chelazzi, L., Miller, E. K., Duncan, J., &Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex.Nature,363, 345–347.CrossRefPubMedGoogle Scholar
  13. Connor, C. E., Preddie, D. C, Gallant, J. L., &Van Essen, D. C. (1997). Spatial attention effects in macaque area V4.Journal of Neuroscience,17, 3201–3214.PubMedGoogle Scholar
  14. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., &Petersen, S. E. (1990). Selective attention modulates neural processing of shape, color, and velocity in humans.Science,248, 1556–1559.CrossRefPubMedGoogle Scholar
  15. Corbetta, M., Shulman, G. L., Miezin, M., &Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction.Science,270, 802–805.CrossRefPubMedGoogle Scholar
  16. Desimone, R., &Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience,18, 193–222.CrossRefPubMedGoogle Scholar
  17. Downing, C. J. (1988). Expectancy and visual-spatial attention: Effects on perceptual quality.Journal of Experimental Psychology: Human Perception & Performance,14, 188–202.CrossRefGoogle Scholar
  18. Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli.Psychological Review,87, 272–300.CrossRefPubMedGoogle Scholar
  19. Duncan, J. (1984). Selective attention and the organization of visual information.Journal of Experimental Psychology: General,113,501 -517.CrossRefGoogle Scholar
  20. Duncan, J. (1993). Similarity between concurrent visual discriminations: Dimensions and objects.Perception & Psychophysics,54, 425–430.Google Scholar
  21. Duncan, J., Humphreys, G., &Ward, R. (1997). Competitive brain activity in visual attention.Current Opinion in Neurobiology,7,255–261.CrossRefPubMedGoogle Scholar
  22. Duncan, J., Martens, S., &Ward, R. (1997). Restricted attentional capacity within but not between sensory modalities.Nature,387,808–810.CrossRefPubMedGoogle Scholar
  23. Duncan, J., &Nimmo-Smith, I. (1996). Objects and attributes in divided attention: Surface and boundary systems.Perception & Psychophysics,58, 1076–1084.Google Scholar
  24. Duncan, J., Ward.R., &Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision.Nature,369, 313–315.CrossRefPubMedGoogle Scholar
  25. Enns, J. T., &Rensink, R. A. (1990). Influence of scene-based properties on visual search.Science,247, 721–723.CrossRefPubMedGoogle Scholar
  26. Felleman, D. J., &Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex.Cerebral Cortex,1, 1–47.CrossRefPubMedGoogle Scholar
  27. Fisher, D. L. (1984). Central capacity limits in consistent mapping, visual search tasks: Capacity scanning in visual search.Cognitive Psychology,16, 449–484.CrossRefPubMedGoogle Scholar
  28. Isenberg, L., Nissen, M. J., &Marchak, L. C. (1990). Attentional processing and the independence of color and orientation.Journal of Experimental Psychology: Human Perception & Performance,16, 869–878.CrossRefGoogle Scholar
  29. Ivry, R. B., Franz, E. A., Kingstone, A., &Johnston, J. C. (1998). The psychological refractory period effect following callosotomy: Uncoupling of lateralized response codes.Journal of Experimental Psychology: Human Perception & Performance,24, 463–480.CrossRefGoogle Scholar
  30. Johnston, J. C, McCann, R. S., &Remington, R. W. (1995). Chronometrie evidence for two types of attention.Psychological Science,6, 365–369.CrossRefGoogle Scholar
  31. Johnston, J. C, Ruthruff, E., &Monheit, M. (1997). Dependence by any other name smells just as sweet: Reply to van der Velde and van der Heijden (1997).Journal of Experimental Psychology: Human Perception & Performance,23, 1813–1818.CrossRefGoogle Scholar
  32. Joseph, J. S., Chun, M. M., &Nakayama, K. (1997). Attentional requirements in a “preattentive” feature search.Nature,387, 805–807.CrossRefPubMedGoogle Scholar
  33. Julesz, B. (1981). Textons, the elements of texture perception and their interactions.Nature,290, 91–97.CrossRefPubMedGoogle Scholar
  34. Julesz, B. (1984). Towards an axiomatic theory of preattentive vision. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.),Dynamic aspects of neocortical function (pp. 585–612). Washington, DC: Neurosciences Research Foundation.Google Scholar
  35. Kahneman, D. (1973).Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  36. Kahneman, D., &Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman & D. R. Davies (Eds.),Varieties of attention (pp. 29–61). New York: Academic Press.Google Scholar
  37. Kanwisher, N., &Driver, J. (1992). Objects, attributes, and visual attention: Which, what and where.Current Directions of Psychological Science,1,26–31.CrossRefGoogle Scholar
  38. Kinsbourne, M. (1981). Single channel theory. In D. Holding (Ed.),Human skills (pp. 65–89). Chichester, U.K.: Wiley.Google Scholar
  39. Kletss, J. A., &Lane, D. M. (1986). Locus and persistence of capacity limitations in visual information processing.Journal of Experimental Psychology: Human Perception & Performance,12, 200–210.CrossRefGoogle Scholar
  40. Koch, C, &Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry.Human Neurobiology,4, 219–227.PubMedGoogle Scholar
  41. Lee, D. K., Koch, C, &Braun, J. (1997a). Attentional modulation of contrast masking.Investigative Ophthalmology & Visual Science,38, 5457.Google Scholar
  42. Lee.D. K., Koch.C, &Braun, J. (1997b). Spatial vision thresholds in the near absence of attention.Vision Research,37, 2409–2418.CrossRefPubMedGoogle Scholar
  43. Lindsay, P. H., Taylor, M. M., &Forbes, S. M. (1968). Attention and multidimensional discrimination.Perception & Psychophysics,4, 113–117.Google Scholar
  44. Luck, S. J., &Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions.Nature,390, 279–281.CrossRefPubMedGoogle Scholar
  45. Massaro, D. W., &Warner, D. S. (1997). Dividing attention between auditory and visual perception.Perception & Psychophysics,21, 569–571.CrossRefGoogle Scholar
  46. Maunsell, J. H. R. (1995). The brain’s visual world—Representation of visual targets in cerebral cortex.Science,270, 764–769.CrossRefPubMedGoogle Scholar
  47. Miller, E. K., Li, L., &Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task.Journal of Neuroscience,13, 1460–1478.PubMedGoogle Scholar
  48. Monheit, M., &Johnston, J. C. (1994). Spatial attention to arrays of multidimensional objects.Journal of Experimental Psychology: Human Perception & Performance,20, 691–708.CrossRefGoogle Scholar
  49. Moran, J., &Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex.Science,229, 782–784.CrossRefPubMedGoogle Scholar
  50. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas VI, V2, and V4 in the presence of competing stimuli.Journal of Neurophysiology,70, 909–919.PubMedGoogle Scholar
  51. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4.Journal of Neuroscience,14, 2178–2189.PubMedGoogle Scholar
  52. Mozer, M. C. (1991).The perception of multiple objects: A connectionist approach. Cambridge, MA: MIT Press.Google Scholar
  53. Nakayama, K., &Joseph, J. (1998). In R. Parasuraman (Ed.),The attentive brain (pp. 279–298). Cambridge, MA: MIT Press.Google Scholar
  54. Nakayama, K., &MacKeben, M. (1989). Sustained and transient components of focal visual attention.Vision Research,29, 1631–1647.CrossRefPubMedGoogle Scholar
  55. Navon, D., &Gopher, D. (1979). On the economy of the human processing system.Psychological Review,86, 214–255.CrossRefGoogle Scholar
  56. Neisser, U. (1967).Cognitive psychology. New York: Appleton Century Crofts.Google Scholar
  57. Nissen, M. J. (1985). Accessing features and objects: Is location special? In M. I. Posner & O. S. M. Marin (Eds.),Attention & performance XI (pp. 205–219). Hillsdale, NJ: Erlbaum.Google Scholar
  58. Norman, D. A., &Bobrow, D. G. (1975). On data-limited and resource-limited processes.Cognitive Psychology,1, 44–64.CrossRefGoogle Scholar
  59. Pashler, H. (1991). Shifting visual attention and selecting motor responses: Distinct attentional mechanisms.Journal of Experimental Psychology: Human Perception & Performance,17, 1023–1040.CrossRefGoogle Scholar
  60. Pashler, H. (1994). Dual-task interference in simple tasks—Data and theory.Psychological Bulletin,116, 220–244.CrossRefPubMedGoogle Scholar
  61. Pashler, H. (1997).The psychology of attention. Cambridge, MA: MIT Press.Google Scholar
  62. Pashler, H., Luck, S., O’brien, S., Mangun, R., &Gazzaniga, M. (1995). Sequential operation of disconnected cerebral hemispheres in “split-brain” patients.NeuroReport,5, 2381–2384.CrossRefGoogle Scholar
  63. Potter, M. (1976). Short-term conceptual memory for pictures.Journal of Experimental Psvchology: Learning, Memory, & Cognition,2, 509–521.CrossRefGoogle Scholar
  64. Robinson, D. L., &Petersen, S. E. (1992). The pulvinar and visual salience.Trends in Neurosciences,15, 127–132.CrossRefPubMedGoogle Scholar
  65. Salinas, E., &Abbott, L. F. (1997). Invariant visual responses from attentional gain fields.Journal of Neurophysiology,77, 3267–3272.PubMedGoogle Scholar
  66. Shiffrin, R. M., &Gardner, G. T. (1972). Visual processing capacity and attentional control.Journal of Experimental Psychology,93, 78–82.CrossRefGoogle Scholar
  67. Sperling, G. (1960). The information available in visual presentations.Psychological Monographs,74, 1–29.Google Scholar
  68. Sperling, G., &Dosher, B. (1986). Strategy and optimization in human information processing. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.),Handbook of perception and human performance (pp. 1–65). New York: Wiley.Google Scholar
  69. Sperling, G., &Melchner, M. J. (1978). The attention operating characteristic: Some examples from visual search.Science,202,315–318.CrossRefPubMedGoogle Scholar
  70. Treisman, A. (1969). Strategies and models of selective attention.Psychological Review,76, 282–299.CrossRefPubMedGoogle Scholar
  71. Treisman, A., &Davies, A. (1973). Dividing attention to ear and eye. In S. Kornblum (Ed.),Attention and performance IV (pp. 101–117). New York: Academic Press.Google Scholar
  72. Treisman, A., &Gelade, G. (1980). A feature integration theory of attention.Cognitive Psychology,12, 97–136.CrossRefPubMedGoogle Scholar
  73. Treisman, A., &Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries.Psychological Review,95, 15–48.CrossRefPubMedGoogle Scholar
  74. Treisman, A., &Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separable features.Journal of Experimental Psychology: General,114, 285–310.CrossRefGoogle Scholar
  75. Treue, S., &Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST.Nature,382, 539–541.CrossRefPubMedGoogle Scholar
  76. Ungerleider, L. G. (1995). Functional brain imaging studies of cortical mechanisms for memory.Science,270, 769–775.CrossRefPubMedGoogle Scholar
  77. Van Der Velde, F., &Van Der Heijden, A. H. C. (1997). On the statistical independence of color and shape in object identification.Journal of Experimental Psychology: Human Perception & Performance,23, 1798–1812.CrossRefGoogle Scholar
  78. Van Essen, D. C, &Drury, H. A. (1997). Structural and functional analyses of human cerebral cortex.Journal of Neuroscience,17, 7079–7102.PubMedGoogle Scholar
  79. Van Essen, D. C, &Gallant, J. (1994). Neural mechanisms of form and motion processing in the primate visual system.Neuron,13, 1–10.CrossRefPubMedGoogle Scholar
  80. Vecera, S., &Farah, M. J. (1994). Does visual attention select objects or locations?Journal of Experimental Psychology: General,123, 146–160.CrossRefGoogle Scholar
  81. Ward, R., Duncan, J., &Shapiro, K. (1996). The slow time-course of visual attention.Cognitive Psychology,30, 79–109.CrossRefPubMedGoogle Scholar
  82. Ward, R., Duncan, J., &Shapiro, K. (1997). Effects of similarity, difficulty, and nontarget presentation on the time course of visual attention.Perception & Psychophysics,59, 593–600.Google Scholar
  83. Wen, J., Koch, C, &Braun, J. (1995). Visual tracking of multiple moving-objects requires modality-specific attention.Investigative Ophthalmology & Visual Science,36, 900.Google Scholar
  84. Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search.Psychonomic Bulletin & Review,1, 202–238.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1999

Authors and Affiliations

  • Dale Kathleen Lee
    • 1
  • Christof Koch
    • 1
  • And Jochen Braun
    • 1
    Email author
  1. 1.Biology 139-74California Institute of TechnologyPasadena

Personalised recommendations