Skip to main content

The visual system of the cat

Abstract

So much of our current knowledge about the neurophysiology of vision has come from studying the visual system of the cat. Using microelectrode techniques, neurophysiologists have examined in great detail the spatial properties of receptive fields of neurons at various levels of the feline nervous system, and headway is now being made in discovering the patterns of neural connections which give rise to the remarkable degree of stimulus selectivity characteristic of these neurons. This paper reviews the major findings concerning the visual system of the normal adult cat, from optics to visual cortex, and summarizes the physiological consequences of early visual deprivation on the visual nervous system of the cat. The review concludes with remarks about the validity of generalizing from cat neurophysiology to human vision.

Reference Notes

  1. 1.

    Hirsch, H. V. B., & Leventhal, A.X-cell and Y-cell influenced neurons in the cat’s visual cortex following pattern deprivation. Paper given at the meetings of the Association for Research in Vision and Ophthalmology, Sarasota, Florida, 1976.

  2. 2.

    Van Sluyters, R. C. Personal communication, 1978.

  3. 3.

    Enroth-Cugell, C. Personal communication, 1978.

References

  1. Adey, W. R., &Noda, H. Influence of eye movements on geniculostriate excitability in the cat.Journal of Physiology, 1973,235, 805–821.

    PubMed  Google Scholar 

  2. Albus, K.. A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography.Experimental Brain Research, 1975,24, 159–179. (a)

    Article  Google Scholar 

  3. Albus, K. A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. II. The spatial organization of the orientation domain.Experimental Brain Research, 1975,24, 181–202. (b)

    Article  Google Scholar 

  4. Albus, K. Predominance of monocularly driven cells in the projection area of the central visual field in cat’s striate cortex.Brain Research, 1975,89, 341–347. (c)

    PubMed  Article  Google Scholar 

  5. Altman, J. Some fibre projections to the superior colliculus in the cat.Journal of Comparative Neurology, 1962,119, 77–95.

    Article  Google Scholar 

  6. Barlow, H., Blakemore, C. B., &Pettigrew, J. D. The neural mechanism of binocular depth discrimination.Journal of Physiology, 1967,193, 327–342.

    PubMed  Google Scholar 

  7. Barlow, H. B., Fitzhugh, R., &Kuffler, S. W. Change of organization in the receptive fields of the cat’s retina during dark adaptation.Journal of Physiology, 1957,137, 338–354.

    PubMed  Google Scholar 

  8. Barlow, H. B., &Levick, W. R. Changes in the maintained discharge with adaptation level in the cat retina.Journal of Physiology, 1969,202, 699–718.

    PubMed  Google Scholar 

  9. Baxter, B. The effect of visual deprivation during postnatal development on the electroretinogram of the cat.Experimental Neurology, 1966,14, 224–237.

    PubMed  Article  Google Scholar 

  10. Benevento, L. A., Creutzfeldt, O. D., &Kuhnt, U. Significance of intracortical inhibition in the visual cortex.Nature New Biology, 1972,238, 124–126.

    PubMed  Article  Google Scholar 

  11. Beresford, W. A. Fibre degeneration following lesions of the visual cortex of the cat. In R. Jung & H. Kornhuber (Eds.),The visual system: Neurophysiology and psychophysics. Berlin: Springer, 1961.

    Google Scholar 

  12. Berkley, M. A. Cat visual psychophysics: Neural correlates and comparisons with man. In J. C. Sprague & A. N. Epstein (Eds.),Progress in psychobiology and physiological psychology (Vol. 6). New York: Academic Press, 1976.

    Google Scholar 

  13. Berkley, M. A., &Watkins, D. W. Visual acuity of the cat estimated from evoked cerebral potentials.Nature New Biology, 1971,234, 81–92.

    Article  Google Scholar 

  14. Berkley, M. A., &Watkins, D. W. Grating resolution and refraction in the cat estimated from evoked cerebral potentials.Vision Research, 1973,13, 403–415.

    PubMed  Article  Google Scholar 

  15. Berman, N., &Daw, N. W. Comparison of the critical periods for monocular and directional deprivation in cats.Journal of Physiology, 1977,265, 249–259.

    PubMed  Google Scholar 

  16. Berthoz, A., Jeannerod, M., Vital-Durand, F., &Oliveras, J. L. Development of vestibulo-ocular responses in visually deprived kittens.Experimental Brain Research, 1975,23, 425–442.

    Google Scholar 

  17. Bilge, M., Bingle, A., Seneviratne, K. N., &Whitteridge, D. A. map of the visual cortex in the cat.Journal of Physiology, 1967,191, 116–118P.

    Google Scholar 

  18. Bishop, P. O.. Neurophysiology of binocular single vision and stereopsis. In R. Jung (Ed.),Handbook of sensory physiology. Berlin: Springer-Verlag, 1973.

    Google Scholar 

  19. Bishop, P. O., Coombs, J. S., &Henry, G. G. Responses to visual contours: Spatial-temporal aspects of excitation in the receptive fields of simple striate neurones.Journal of Physiology, 1971,219, 625–659.

    PubMed  Google Scholar 

  20. Bishop, P. O., Coombs, J. S., &Henry, G. H. Receptive fields of simple cells in the cat striate cortex.Journal of Physiology, 1973,231, 31–60.

    PubMed  Google Scholar 

  21. Blake, R. Psychophysical studies of spatial vision in cats. In S. J. Cool & E. Smith (Eds.),Fronters in visual science. New York: Springer-Verlag, 1978.

    Google Scholar 

  22. Blake, R., &Bellhorn, R. Visual acuity in cats with central retinal lesions.Vision Research, 1978,18, 15–18.

    PubMed  Article  Google Scholar 

  23. Blake, R., &Camisa, J. Temporal aspects of spatial vision in the cat.Experimental Brain Research, 1977,28, 325–333.

    Article  Google Scholar 

  24. Blake, R., Cool, S. J., &Crawford, M. L. J. Visual resolution in the cat.Vision Research, 1974,14, 1211–1217.

    PubMed  Article  Google Scholar 

  25. Blake, R., &Hirsch, H. V. B. Binocular depth discrimination in normal and specially-reared cats.Science, 1975,190, 1114–1116.

    PubMed  Article  Google Scholar 

  26. Blakemore, C. The conditions required for the maintenance of binocularity in the kitten’s visual cortex.Journal of Physiology, 1976,261, 423–444.

    PubMed  Google Scholar 

  27. Blakemore, C. Genetic instructions and developmental plasticity in the kitten’s visual cortex.Philosophical Transactions of the Royal Society (London, B), 1977,278, 425–434.

    Article  Google Scholar 

  28. Blakemore, C., &Cooper, G. F. Development of the brain depends on the visual environment.Nature, 1970,228, 477–478.

    PubMed  Article  Google Scholar 

  29. Blakemore, C., Fiorentini, A., &Maffei, L. A. second neural mechanism of binocular depth discrimination.Journal of Physiology, 1972,226, 725–740.

    PubMed  Google Scholar 

  30. Blakemore, C., &Mitchell, D. E. Environmental modification of the visual cortex and the neural basis of learning and memory.Nature, 1973,241, 467–468.

    PubMed  Article  Google Scholar 

  31. Blakemore, C., Movshon, J. A., &Van Sluyters, R. C. Modification of the kitten’s visual cortex by exposure to spatially periodic patterns.Experimental Brain Research, 1978,31, 561–572.

    Article  Google Scholar 

  32. Blakemore, C., &Tobin, E. A. Lateral inhibition between orientation detectors in the cat’s visual cortex.Experimental Brain Research, 1972,15, 439–440.

    Article  Google Scholar 

  33. Blakemore, C., &Van Sluyters, R. C. Reversal of the physiological effects of monocular deprivation in kittens: Further evidence for a sensitive period.Journal of Physiology, 1974,237, 195–216. (a)

    PubMed  Google Scholar 

  34. Blakemore, C., &Van Sluyters, R. C. Experimental analysis of amblyopia and strabismus.British Journal of Ophthalmology, 1974,58, 176–182. (b)

    PubMed  Article  Google Scholar 

  35. Blakemore, C., &Van Sluyters, R. C. Innate and environmental factors in the development of the kitten’s visual cortex.Journal of Physiology, 1975,248, 663–716.

    PubMed  Google Scholar 

  36. Blakemore, C., Van Sluyters, R. C., Peck, C. K., &Hein, A. Development of cat visual cortex following rotation of one eye.Nature, 1975,257, 584–586.

    PubMed  Article  Google Scholar 

  37. Blasdel, G. G., Mitchell, D. E., Muir, D. W., &Pettigrew, J. D. A physiological and behavioral study in cats of the effect of early visual experience with contours of a single orientation.Journal of Physiology, 1977,265, 615–636.

    PubMed  Google Scholar 

  38. Blasdel, G. G., &Pettigrew, J. D. Effect of prior visual experience on cortical recovery from the effects of unilateral eyelid suture in kitten.Journal of Physiology, 1978,272, 601–619.

    Google Scholar 

  39. Bloom, M., &Berkley, M. Visual acuity and the near point of accommodation in cats.Vision Research, 1977,17, 723–730.

    PubMed  Google Scholar 

  40. Bonds, A. B. Optical quality of the living cat eye.Journal of Physiology, 1974,243, 777–795.

    PubMed  Google Scholar 

  41. Bonds, A. B., Enroth-Cugell, C., &Pinto, L. H. Image quality of the cat eye measured during retinal ganglion cell experiments.Journal of Physiology, 1972,220, 383–401.

    PubMed  Google Scholar 

  42. Bonds, A. B., &Freeman, R. D. Development of optical quality in the kitten eye.Vision Research, 1978,18, 391–398.

    PubMed  Article  Google Scholar 

  43. Boycott, B. B., &Kolb, H. The connections between bipolar cells and photoreceptors in the retina of the domestic cat.Journal of Comparative Neurology, 1973,148, 81–114.

    Google Scholar 

  44. Boycott, B. B., &Wassle, H. The morphological types of ganglion cells of the domestic cat’s retina.Journal of Physiology, 1974,240, 397–419.

    PubMed  Google Scholar 

  45. Breitmeyer, B. G., &Ganz, L. Temporal studies with flashed gratings: Inferences about human transient and sustained systems.Vision Research, 1977,17, 861–865.

    PubMed  Article  Google Scholar 

  46. Brindley, G. S.Physiology of the retina and visual pathway. London: Camelot Press, 1970.

    Google Scholar 

  47. Brooke, R. N. L., Downer, D. J. deC., &Powell, T. P. S. Centrifugal fibres to the retina in the monkey and cat.Nature, 1965,207, 1365–1367.

    PubMed  Article  Google Scholar 

  48. Brown, J. E., &Major, D. Cat retinal ganglion cell dendrite fields.Experimental Neurology, 1966,15, 70–78.

    PubMed  Article  Google Scholar 

  49. Bullier, J. H., &Norton, T. T. Receptive-field properties of X-, Y- and intermediate cells in the cat lateral geniculate nucleus.Brain Research, 1977,121, 151–156.

    PubMed  Article  Google Scholar 

  50. Burke, W., &Cole, A. M. Extraretinal influences on the lateral geniculate nucleus.Review of Physiology, Biochemistry and Pharmacology, 1978,80, 106–166.

    Google Scholar 

  51. Burns, D. B., &Pritchard, R. Cortical conditions for fused binocular vision.Journal of Physiology, 1968,197, 149–171.

    PubMed  Google Scholar 

  52. Campbell, F. W., Cooper, G. F., &Enroth-Cugell, C. The spatial selectivity of the visual cells of the cat.Journal of Physiology, 1968,203, 223–235.

    Google Scholar 

  53. Campbell, F. W., Maffei, L., &Piccolino, M. The contrast sensitivity of the cat.Journal of Physiology, 1973,229, 719–731.

    PubMed  Google Scholar 

  54. Chow, K. L., &Stewart, D. L. Reversal of structural and functional effects of long-term visual deprivation in cats.Experimental Neurology, 1972,34, 409–433.

    PubMed  Article  Google Scholar 

  55. Clare, M. H., &Bishop, G. H. Responses from an association area secondarily activated from optic cortex.Journal of Neurophysiology, 1954,17, 271–277.

    PubMed  Google Scholar 

  56. Cleland, B. G., Dubin, M. W., &Levick, W. R. Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus.Journal of Physiology, 1971,217, 473–496.

    PubMed  Google Scholar 

  57. Cleland, B. G., &Enroth-Cugell, C. Quantitative aspects of sensitivity and summation in the cat retina.Journal of Physiology, 1968,198, 17–38.

    PubMed  Google Scholar 

  58. Cleland, B. G., &Levick, W. R. Brisk and sluggish concentrically organized ganglion cells in the cat’s retina and lateral geniculate nucleus.Journal of Physiology, 1974,205, 421–456. (a)

    Google Scholar 

  59. Cleland, B. G., &Levick, W. R. Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification.Journal of Physiology, 1974,240, 457–492. (b)

    PubMed  Google Scholar 

  60. Cleland, B. G., Levick, W. R., Morstyn, R., &Wagner, H. G. Lateral geniculate relay of slowly conducting afférents to cat visual cortex.Journal of Physiology, 1976,255, 457–492.

    Google Scholar 

  61. Cleland, B. G., Levick, W. R., &Sanderson, K. J. Properties of sustained and transient ganglion cells in the cat retina.Journal of Physiology, 1973,228, 649–680.

    PubMed  Google Scholar 

  62. Coles, J. A. Some reflective properites of the tapetum lucidum of the cat’s eye.Journal of Physiology, 1971,212, 393–409.

    PubMed  Google Scholar 

  63. Creutzfeldt, O. D., &Heggelund, P. Neural plasticity in visual cortex of adult cats after exposure to visual patterns.Science, 1975,188, 1025–1027.

    PubMed  Article  Google Scholar 

  64. Creutzfeldt, O. D., Kuhnt, U., &Benevento, L. A. An intracellular analysis of visual cortex neurons to moving stimuli: Responses in a cooperative neural network.Experimental Brain Research, 1974,21, 251–274.

    Google Scholar 

  65. Crewther, D. P., Crewther, S., &Pettigrew, J. D. A role for extraocular afferents in post-critical period reversal of monocular deprivation.Journal of Physiology, 1978,282, 181–195.

    PubMed  Google Scholar 

  66. Cynader, M, Berman, N., &Hein, A. Cats reared in stroboscope illumination: Effects on receptive fields in visual cortex.Proceedings of the National Academy of Science, U.S.A., 1973,70, 1353–1354.

    Article  Google Scholar 

  67. Cynader, M., Berman, N., &Hein, A. Cats raised in a one-directional world: Effects on receptive fields in visual cortex and superior colliculus.Experimental Brain Research, 1975,22, 267–280.

    Article  Google Scholar 

  68. Cynader, M., &Chernenko, G. Abolition of direction selectivity in the visual cortex of the cat.Science, 1976,193, 504–505.

    PubMed  Article  Google Scholar 

  69. Cynader, M., &Mitchell, D. E. Monocular astigmatism effects on kitten visual cortex development.Nature, 1977,270, 177–178.

    PubMed  Article  Google Scholar 

  70. Cynader, M., &Regan, D. Neurones in cat parastriate cortex sensitive to the direction of motion in three-dimensional space.Journal of Physiology, 1978,274, 549–569.

    PubMed  Google Scholar 

  71. Daniels, J. D., Norman, J. L., &Pettigrew, J. D. Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats.Experimental Brain Research, 1977,29, 155–172.

    Article  Google Scholar 

  72. Daniels, J. D., &Pettigrew, J. D. A study of inhibitory antagonism in cat visual cortex.Brain Research, 1975,93, 41–62.

    PubMed  Article  Google Scholar 

  73. Daw, N. W., Berman, N. E. J., &Ariel, M. Interaction of critical periods in the visual cortex of kittens.Science, 1978,199, 565–567.

    PubMed  Article  Google Scholar 

  74. Daw, N. W., &Pearlman, A. L. Cat colour vision: One cone process or several?Journal of Physiology, 1969,201, 745–764.

    PubMed  Google Scholar 

  75. Daw, N. W., &Wyatt, H. J. Kittens reared in a one-directional environment: Evidence for a critical period.Journal of Physiology, 1976,257, 155–170.

    PubMed  Google Scholar 

  76. Dews, P. B., &Wiesel, T. N. Consequences of monocular deprivation on visual behavior in kittens.Journal of Physiology, 1970,206, 437–455.

    PubMed  Google Scholar 

  77. Donaldson, I. M. L., &Nash, J. R. G. Variability of the relative preference for stimulus orientation and direction of movement in some units of the cat visual cortex (areas 17 and 18).Journal of Physiology, 1975,245, 305–324.

    PubMed  Google Scholar 

  78. Dreher, B., &Cottee, L. Visual receptive field properties of cells in area 18 of the cat’s cerebral cortex before and after acute lesion of area 17.Journal of Neurophysiology, 1975,38, 738–750.

    Google Scholar 

  79. Dreher, B., Fukada, Y., &Rodieck, R. W. Identification classification and anatomical segregation of cells with X-like properties in the lateral geniculate nucleus of old-world primates.Journal of Physiology, 1976,258, 433452.

    Google Scholar 

  80. Duffy, F. H., Snodgrass, S. R., Burchfiel, J. L., &Conway, J. L. Bicuculline reversal of deprivation amblyopia in the cat.Nature, 1976,260, 256–257.

    PubMed  Article  Google Scholar 

  81. Dursteler, M. R., Garey, L. J., &Movshon, J. A. Reversal of the morphological effects of monocular deprivation in the kitten’s lateral geniculate nucleus.Journal of Physiology, 1976,261, 189–210.

    PubMed  Google Scholar 

  82. Ebner, F. F., &Meyers, R. E. Distribution of corpus callosum and anterior commissure in cat and raccoon.Journal of Comparative Neurology, 1965,124, 353–366.

    PubMed  Article  Google Scholar 

  83. Eggers, H. M., &Blakemore, C. Physiological basis of anisometropic amblyopia.Science, 1978,201, 264–266.

    PubMed  Article  Google Scholar 

  84. Enroth-Cugell, C, & Lennie, P. The control of retinal ganglion cell discharge by receptive field surrounds.Journal of Physiology, 1975,247, 551–578.

    PubMed  Google Scholar 

  85. Enroth-Cugell, C, & Robson, J. G. The contrast sensitivity of retinal ganglion cells of the cat.Journal of Physiology, 1966,187, 517–552.

    PubMed  Google Scholar 

  86. Enroth-Cugell, C., &Robson, J. G. Direct measurement of image quality in the cat eye.Journal of Physiology, 1974,239, 30–31P.

    Google Scholar 

  87. Enroth-Cugell, C., &Shapley, R. M. Flux, not retinal illumination, is what cat retinal ganglion cells really care about.Journal of Physiology, 1973,233, 311–326.

    PubMed  Google Scholar 

  88. Eysel, U. T., Grusser, O. J., &Hoffman, K. P. Monocular deprivation and the signal transmission by X- and Y-neurons of the cat lateral geniculate nucleus.Experimental Brain Research, 1979,34, 521–539.

    Article  Google Scholar 

  89. Fischer, B., Kruger, J., &Droll, W. Quantitative aspects of the shift-effect in cat retinal ganglion cells.Brain Research, 1975,83, 391–403.

    PubMed  Article  Google Scholar 

  90. Fox, R., &Blake, R. Stereoscopic vision in the cat.Nature (London), 1971,233, 55–56.

    Article  Google Scholar 

  91. Franklin, K. B. J., Ikeda, H., Jacobson, S. G., &McDonald, W. I. Visual acuity in cats raised with surgically produced squint.Journal of Physiology, 1975,256, 114–115P.

    Google Scholar 

  92. Freeman, R. D., &Lai, C. E. Development of the optical surfaces of the kitten eye.Vision Research, 1978,18, 399–408.

    PubMed  Article  Google Scholar 

  93. Freeman, R. D., Mitchell, D. E., &Millodot, M. A neural effect of partial visual deprivation in humans.Science, 1972,175, 1384–1386.

    PubMed  Article  Google Scholar 

  94. Freeman, R. D., &Pettigrew, J. D. Alteration of visual cortex from environmental asymmetries.Nature, 1973,246, 359–360.

    PubMed  Article  Google Scholar 

  95. Freeman, R. D., Wong, S., &Zezula, S. Optical development of the kitten cornea.Vision Research, 1978,18, 408–414.

    Google Scholar 

  96. Friedlander, M. J., Lin, C. S., &Sherman, S. M. Structure of physiologically identified X and Y cells in the cat’s lateral geniculate nucleus.Science, 1979,204, 1114–1117.

    PubMed  Article  Google Scholar 

  97. Frisby, J. P., &Clatworthy, J. L. Evidence for separate movement and form channels in the human visual system.Perception, 1974,3, 87–96.

    PubMed  Article  Google Scholar 

  98. Fukada, Y. Receptive field organization of cat optic nerve fibres with special reference to conduction velocity.Vision Research, 1971,11, 209–226.

    PubMed  Article  Google Scholar 

  99. Fukada, Y., &Saito, H. A. The relationship between response characteristics to flicker stimulation and receptive field organization in the cat’s optic nerve fibers.Vision Research, 1971,11, 227–240.

    PubMed  Article  Google Scholar 

  100. Fukada, Y., &Stone, J. Retinal distribution and central projections of Y-, X-, and W-cells of the cat’s retina.Journal of Neurophysiology, 1974,37, 749–772.

    Google Scholar 

  101. Fukada, Y., &Stone, J. Evidence of differential inhibitory influences on X- and Y-type relay cells in the cat’s lateral geniculate nucleus.Brain Research, 1976,113, 188–196.

    Article  Google Scholar 

  102. Ganz, L., &Fitch, M. The effects of visual deprivation on perceptual behaviour.Experimental Neurology, 1968,22, 638–660.

    PubMed  Article  Google Scholar 

  103. Ganz, L., Fitch, M., &Satterberg, J. A. The selective effect of visual deprivation on receptive field shape determined neurophysiologically.Experimental Neurology, 1968,22, 614–637.

    PubMed  Article  Google Scholar 

  104. Ganz, L., &Haffner, M. E. Permanent perceptual and neurophysiological effects of visual deprivation in the cat.Experimental Brain Research, 1974,20, 67–87.

    Article  Google Scholar 

  105. Ganz, L., Hirsch, H. V. B., &Tieman, S. B. The nature of perceptual deficits in visually deprived cats.Brain Research, 1972,44, 547–568.

    PubMed  Article  Google Scholar 

  106. Garey, L. J., &Blakemore, C. Monocular deprivation: Morphological effects on different classes of neurons in the lateral geniculate nucleus.Science, 1977,195, 414–416. (a)

    PubMed  Article  Google Scholar 

  107. Garey, L. J., &Blakemore, C. The effects of monocular deprivation on different neuronal classes in the lateral geniculate nucleus of the cat.Experimental Brain Research, 1977,28, 259–278. (b)

    Article  Google Scholar 

  108. Garey, L. J., &Powell, T. P. S. The projection of the lateral geniculate nucleus upon the cortex in the cat.Proceedings of the Royal Society of London, B, 1967,169, 107–126.

    Article  Google Scholar 

  109. Garey, L. J., &Powell, T. P. S. The projection of the retina in the cat.Journal of Anatomy, 1968,102, 189–222.

    PubMed  Google Scholar 

  110. Giffin, F., &Mitchell, D. E. The rate of recovery of vision after early monocular deprivation in kittens.Journal of Physiology, 1978,274, 511–537.

    PubMed  Google Scholar 

  111. Gilbert, C. D., &Kelly, J. P. The projections of cells in different layers of the cat’s visual cortex.Journal of Comparative Neurology, 1975,163, 81–106.

    PubMed  Article  Google Scholar 

  112. Gordon, B., &Gummow, L. Effects of extraocular muscle section on receptive fields in cat superior colliculus.Vision Research, 1975,15, 1011–1019.

    PubMed  Article  Google Scholar 

  113. Gordon, B., Presson, J., Packwood, J., &Scheer, R. Alteration of cortical orientation selectivity: Importance of asymmetric input.Science, 1979,204, 1109–1111.

    PubMed  Article  Google Scholar 

  114. Granit, R.Sensory mechanism of the retina. London: Oxford University Press, 1947.

    Google Scholar 

  115. Guillery, R. W. A study of golgi preparations from the dorsal lateral geniculate nucleus of the adult cat.Journal of Comparative Neurology, 1966,128, 21–50.

    PubMed  Article  Google Scholar 

  116. Guillery, R. W. Degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex.Journal of Comparative Neurology, 1967,130, 197–221.

    PubMed  Article  Google Scholar 

  117. Guillery, R. W. The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus body of the cat. A new interpretation.Journal of Comparative Neurology, 1970,138, 339–368.

    Article  Google Scholar 

  118. Guillery, R. W. The effect of lid suture upon the growth of cells in the dorsal lateral geniculate nucleus of kittens.Journal of Comparative Neurology, 1973,148, 417–422.

    PubMed  Article  Google Scholar 

  119. Guillery, R. W., &Casagrande, V. A. Studies of the modifiability of the visual pathways in midwestern Siamese cats.Journal of Comparative Neurology, 1977,174, 15–46.

    PubMed  Article  Google Scholar 

  120. Guillery, R. W., &Stelzner, D. J. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus of the cat.Journal of Comparative Neurology, 1979,139, 413–422.

    Article  Google Scholar 

  121. Haft, J. S., &Harman, P. J. Evidence for central inhibition of retinal function.Vision Research, 1967,7, 499–501.

    PubMed  Article  Google Scholar 

  122. Hammond, P. Spatial organization of receptive fields of LGN neurones.Journal of Physiology, 1972,222, 53–54P.

    Google Scholar 

  123. Hammond, P. Contrasts in spatial organization of receptive fields at geniculate and retinal levels: Centre, surround and outer surround.Journal of Physiology, 1973,228, 115–137.

    PubMed  Google Scholar 

  124. Hammond, P. Receptive field mechanisms of sustained and transient retinal ganglion cells in the cat.Experimental Brain Research, 1975,23, 113–128.

    Article  Google Scholar 

  125. Hammond, P., &Andrews, D. P. Orientation tuning of cells in areas 17 and 18 of the cat’s visual cortex.Experimental Brain Research, 1978,31, 341–351.

    Google Scholar 

  126. Hammond, P., Andrews, D. P., &James, C. R. Invariance of orientational and directional tuning in visual cortical cells of the adult cat.Brain Research, 1975,96, 56–69.

    PubMed  Article  Google Scholar 

  127. Hammond, P., &MacKay, D. M. Differential responsiveness of simple and complex cells in cat striate cortex to visual texture.Experimental Brain Research, 1977,30, 275–296.

    Article  Google Scholar 

  128. Harris, W. A., &Stryker, M. P. Attempts to reverse the effects of monocular deprivation in the adult cat’s cortex.Neuroscience Abstracts, 1977,3, 562.

    Google Scholar 

  129. Hayhow, W. R. The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibres.Journal of Comparative Neurology, 1958,110, 1–63.

    PubMed  Article  Google Scholar 

  130. Heitlander, H., &Hoffman, K. P. The visual field of monocularly deprived cats after late closure or enucleation of the nondeprived eye.Brain Research, 1978,145, 153–160.

    PubMed  Article  Google Scholar 

  131. Henry, G. H. Receptive field classes of cells in the striate cortex of the cat.Brain Research, 1977,133, 1–28.

    PubMed  Article  Google Scholar 

  132. Henry, G. H., Bishop, P. O., &Dreher, B. Orientation, axis and direction as stimulus parameters for striate cells.Vision Research, 1974,14, 767–777.

    PubMed  Article  Google Scholar 

  133. Henry, G. H., Bishop, P. O., Tupper, R. M., &Dreher, B. Orientation specificity and response variability of cells in the striate cortex.Vision Research, 1973,13, 1771–1779.

    PubMed  Article  Google Scholar 

  134. Hickey, T. L., Spear, P. D., &Kratz, K. E. Quantitative studies of cell size in the cat’s dorsal lateral geniculate nucleus following visual deprivation.Journal of Comparative Neurology, 1977,172, 265–282.

    PubMed  Article  Google Scholar 

  135. Hirsch, H. V. B. Visual perception in cats after environmental surgery.Experimental Brain Research, 1972,15, 405–423.

    Article  Google Scholar 

  136. Hirsch, H. V. B., &Spinelli, D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats.Science, 1970,168, 869–871.

    PubMed  Article  Google Scholar 

  137. Hirsch, H. V. B., &Spinelli, D. N. Modification of the distribution of receptive field orientation in cats by selective visual exposure during development.Experimental Brain Research, 1971,13, 509–527.

    Google Scholar 

  138. Hockstein, S., &Shapley, R. M. Linear and non-linear spatial subunits in Y cat retinal ganglion cells.Journal of Physiology, 1976,262, 265–284. (a)

    Google Scholar 

  139. Hochstein, S., &Shapley, R. M. Quantitative analysis of retinal ganglion cell classifications.Journal of Physiology, 1976,262, 237–264. (b)

    PubMed  Google Scholar 

  140. Hoffmann, K. P., &Cynader, M. Functional aspects of plasticity in the visual system of adult cats after early monocular deprivation.Philosophical Transactions of the Royal Society London, B, 1977,278, 411–424.

    Article  Google Scholar 

  141. Hoffmann, K.-P., &Sireteanu, R. Interlaminar differences in the effects of early and late monocular deprivation on the visual acuity of cells in the lateral geniculate nucleus of the cat.Neuroscience Letters, 1977,5, 171–175.

    PubMed  Article  Google Scholar 

  142. Hoffmann, K.-P., &Stone, J. Conduction velocity of afferents to cat visual cortex: A correlation with cortical receptive field properties.Brain Research, 1971,32, 460–466.

    Article  Google Scholar 

  143. Hoffman, K.-P., Stone, J., &Sherman, S. M. Relay of receptive field properties in dorsal lateral geniculate nucleus of the cat.Journal of Neurophysiology, 1972,35, 518–531.

    Google Scholar 

  144. Hollander, H. The projection from the visual cortex to the lateral geniculate body (LGB). An experimental study with silver impregnation methods in the cat.Experimental Brain Research, 1970,10, 219–235.

    Article  Google Scholar 

  145. Hollander, H., &Vanegas, H. The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish-peroxidase.Journal of Comparative Neurology, 1977,173, 519–536.

    PubMed  Article  Google Scholar 

  146. Honrubia, F. M., &Elliot, J. H. Dendritic fields of the retinal ganglion cells in the cat.Archives of Ophthalmology, 1970,84, 221–226.

    PubMed  Google Scholar 

  147. Hubel, D. H., &Wiesel, T. N. Receptive fields of optic nerve fibres in the spider monkey.Journal of Physiology, 1960,154, 572–580.

    PubMed  Google Scholar 

  148. Hubel, D. H., &Wiesel, T. N. Integrative action in the cat’s lateral geniculate body.Journal of Physiology, 1961,155, 385–398.

    PubMed  Google Scholar 

  149. Hubel, D. H., &Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.Journal of Physiology, 1962,160, 106–154.

    PubMed  Google Scholar 

  150. Hubel, D. H., &Wiesel, T. N. Shape and arrangement of columns in cat’s striate cortex.Journal of Physiology, 1963,165, 559–568.

    PubMed  Google Scholar 

  151. Hubel, D. H., &Wiesel, T. N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat.Journal of Neurophysiology, 1965,28, 229–289. (a)

    PubMed  Google Scholar 

  152. Hubel, D. H., &Wiesel, T. N. Binocular interaction in striate cortex of kittens reared with artificial squint.Journal of Neurophysiology, 1965,28, 1041–1059. (b)

    PubMed  Google Scholar 

  153. Hubel, D. H., &Wiesel, T. N. Cortical and callosal connections concerned with the vertical meridians of the visual fields in the cat.Journal of Neurophysiology, 1967,30, 1561–1573.

    PubMed  Google Scholar 

  154. Hubel, D. H., &Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex.Journal of Physiology, 1968,195, 215–243.

    PubMed  Google Scholar 

  155. Hubel, D. H., &Wiesel, T. N. Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat.Journal of Physiology, 1969,202, 251–260.

    PubMed  Google Scholar 

  156. Hubel, D. H., &Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens.Journal of Physiology, 1970,206, 419–436.

    PubMed  Google Scholar 

  157. Hubel, D. H., &Wiesel, T. N. A reexamination of stereoscopic mechanisms in area 17 of the cat.Journal of Physiology, 1973,232, 29–30P.

    Google Scholar 

  158. Hubel, D. H., &Wiesel, T. N. Sequence regularity and geometry or orientation columns in the monkey striate cortex.Journal of Comparative Neurology, 1974,158, 267–293.

    PubMed  Article  Google Scholar 

  159. Hubel, D. H., Wiesel, T. N., &LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex.Philosophical Transactions of the Royal Society London, B. 1977,278, 377–409.

    Article  Google Scholar 

  160. Hughes, A. Observing accommodation in the cat.Vision Research, 1973,13, 481–482.

    PubMed  Article  Google Scholar 

  161. Hughes, A. Quantitative analysis of the cat retinal ganglion cell topography.Journal of Comparative Neurology, 1975,163, 107–128.

    PubMed  Article  Google Scholar 

  162. Ikeda, H., &Jacobson, S. G. Convergent squint arrests the development of spatial vision in cats: Behavioural evidence.Journal of Physiology, 1977,270, 60–61P. (a)

    Google Scholar 

  163. Ikeda, H., &Jacobson, S. G. Nasal field loss in cats reared with convergent squint: Behavioural studies.Journal of Physiology, 1977,270, 376–381. (b)

    Google Scholar 

  164. Ikeda, H., Plant, G. T., &Tremain, K. E. Nasal field loss in kittens reared with convergent squint: Neurophysiology and morphological studies of the lateral geniculate nucleusJournal of Physiology, 1977,270, 345–366.

    PubMed  Google Scholar 

  165. Ikeda, H., Tremain, K. E., &Einon, G. Loss of spatial resolution of lateral geniculate nucleus neurones in kittens raised with convergent squint produced at different stages in development.Experimental Brain Research, 1978,31, 207–220.

    Google Scholar 

  166. Ikeda, H., &Wright, M. J. Receptive field organization of ‘sustained’ and ‘transient’ retinal ganglion cells which subserve different functional roles.Journal of Physiology, 1972,227, 769–800.

    PubMed  Google Scholar 

  167. Ikeda, H., &Wright, M. J. Spatial and temporal properties of sustained and transient neurones in area 17 of the cat’s visual cortex.Experimental Brain Research, 1975,22, 363–383.

    Google Scholar 

  168. Ikeda, H., &Wright, M. J. Properties of LGN cells in kittens reared with convergent squint: A neurophysiologicl demonstration of amblyopia.Experimental Brain Research, 1976,25, 63–77.

    Article  Google Scholar 

  169. Imbert, M., &Buisseret, P. Receptive field characteristics and plastic properties of visual cortex in kittens reared with or without visual experience.Experimental Brain Research, 1975,22, 25–36.

    Article  Google Scholar 

  170. Jacobson, J. H., &Gestring, G. F. Centrifugal influence upon the electroretinogram.Archives of Ophthalmology, 1958.60, 295–302.

    Google Scholar 

  171. Jakiela, H. G., &Enroth-Cugell, C. Adaptation and dynamics in X-cells and Y-cells of the cat retina.Experimental Brain Research, 1976,24, 335–342.

    Article  Google Scholar 

  172. Kalil, R. Dark rearing in the caî: Effects on visuomotor behavior and cell growth in the dorsal lateral geniculate nucleus.Journal of Comparative Neurology, 1978,178, 451–468.

    PubMed  Article  Google Scholar 

  173. Kalil, R. E., &Chase, R.. Corticofugal influence on activity of lateral geniculate neurons in the cat.Journal of Neurophysiology, 1970,33, 459–474.

    PubMed  Google Scholar 

  174. Kappauf, W. E. Variation in the size of the cat’s pupil as a function of stimulus, brightness.Journal of Comparative Psychology, 1943,36, 125–131.

    Article  Google Scholar 

  175. Kasamatsu, T., &Pettigrew, J. D. Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens.Science, 1976,194, 206–209.

    PubMed  Article  Google Scholar 

  176. Keesey, U. Flicker and pattern detection: A comparison of thresholds.Journal of the Optical Society of America, 1972,61, 446–448.

    Article  Google Scholar 

  177. Kelly, J. P., &Van Essen, D. C. Cell structure and function in the visual cortex of the cat.Journal of Physiology, 1974,238, 515–547.

    PubMed  Google Scholar 

  178. Kirk, D. L., Levick, W. R., Cleland, B. G., &Wassle, H. Crossed and uncrossed representation of the visual field by brisk-sustained and brisk-transient cat retinal ganglion cells.Vision Research, 1976,16, 225–232.

    PubMed  Article  Google Scholar 

  179. Kolb, H. The connections between horizontal cells and photoreceptors in the retina of the cat: Electron microscopy of golgi preparations.Journal of Comparative Neurology, 1974,155, 1–14.

    PubMed  Article  Google Scholar 

  180. Kolb, H., &Famiglietti, E. V. Rod and cone pathways in the inner plexiform layer of cat retina.Science, 1974,186, 47–79.

    PubMed  Article  Google Scholar 

  181. Kozak, W., Rodieck, R. W., &Bishop, P. O. Responses of single units in lateral geniculate nucleus of cat to moving visual patterns.Journal of Neurophysiology, 1965,28, 19–47.

    PubMed  Google Scholar 

  182. Kratz, K., &Spear, P. Effects of visual deprivation and alterations in binocular competition on responses of striate cortex neurons in the cat.Journal of Comparative Neurology, 1976,170, 141–152.

    PubMed  Article  Google Scholar 

  183. Kratz, K. E., Spear, P. D., &Smith, D. C. Postcritical-period reversal of effects of monocular deprivation on striate cortex cells in the cat.Journal of Neurophysiology, 1976,39, 501–511.

    PubMed  Google Scholar 

  184. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina.Journal of Neurophysiology, 1953,16, 37–68.

    PubMed  Google Scholar 

  185. Kulikowski, J. J., &Tolhurst, D. J. Psychophysical evidence for sustained and transient detectors in human vision.Journal of Physiology, 1973,232, 149–162.

    PubMed  Google Scholar 

  186. La Motte, R. H., &Brown, J. L. Dark adaptation and spectral sensitivity in the cat.Vision Research, 1970,10, 703–716.

    Article  Google Scholar 

  187. Laties, A. M., &Sprague, J. M. The projection of optic tract fibers to the visual centers in the cat.Journal of Comparative Neurology, 1966,127, 35–70.

    PubMed  Article  Google Scholar 

  188. Lee, B. B., Albus, K., Heggelund, P., Hulme, M. J., &Creutzfeldt, O. D. The depth distribution of optimal stimulus orientations for neurones in cat area 17.Experimental Brain Research, 1977,27, 301–314.

    Google Scholar 

  189. Legge, G. E. Sustained and transient mechanisms in human vision: Temporal and spatial properties.Vision Research, 1978,18, 69–81.

    PubMed  Article  Google Scholar 

  190. Leicester, J., &Stone, J. Ganglion, amacrine and horizontal cells of the cat’s retina.Vision Research, 1967,7, 695–705.

    PubMed  Article  Google Scholar 

  191. LeVay, S., &Ferster, D. Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation.Journal of Comparative Neurology, 1977,172, 563–584.

    PubMed  Article  Google Scholar 

  192. LeVay, S., &Ferster, D. Proportion of interneurons in the cat’s lateral geniculate nucleus.Brain Research, 1979,164, 304–308.

    PubMed  Article  Google Scholar 

  193. LeVay, S., &Gilbert, C. Laminar patterns of geniculocortical projection in the cat.Brain Research, 1976,113, 1–19.

    PubMed  Article  Google Scholar 

  194. LeVay, S., Stryker, M. P., &Shatz, C. J. Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study.Journal of Comparative Neurology, 1978,179, 223–244.

    PubMed  Article  Google Scholar 

  195. Leventhal, A. G., &Hirsch, H. V. B. Effects of early experience upon orientation sensitivity and binocularity of neurons in visual cortex of cat.Proceedings of the National Academy of Science, U.S.A., 1977,74, 1272–1276.

    Article  Google Scholar 

  196. Levick, W. R., Cleland, G. B., &Dubin, M. W. Lateral geniculate neurons of cat: Retinal inputs and physiology.Investigative Ophthalmology, 1972,11, 302–311.

    PubMed  Google Scholar 

  197. Levitt, F., &Van Sluyters, R. C. Reduced binocularity following short-term strabismus in the kitten is due to altered visual experiences.Investigative Ophthalmology and Visual Science, 1979,18 (Abs. suppl.), 156.

    Google Scholar 

  198. Lin, H., &Ingram, W. A search for centrifugal optic fibers in the cat.Bulletin of the Institute of Zoology, 1973,12, 51 -57.

    Google Scholar 

  199. Lin, H., &Ingram, W. Retrograde degeneration of primary optic fibers in the cat.Experimental Neurology, 1974,44, 21–34.

    PubMed  Article  Google Scholar 

  200. Lin, C.-S., Kratz, K. E., &Sherman, S. M. Percentage of relay cells in the cat’s lateral geniculate nucleus.Brain Research, 1977,131, 167–173.

    PubMed  Article  Google Scholar 

  201. Lin, C., &Sherman, S. M. Effects of early monocular eyelid suture upon development of relay cell classes in the cat’s lateral geniculate nucleus.Journal of Comparative Neurology, 1978,181, 809–832.

    PubMed  Article  Google Scholar 

  202. Loop, M. S., &Bruce, L. L. Cat color vision: The effect of stimulus size.Science, 1978,199, 1221–1222.

    PubMed  Article  Google Scholar 

  203. Loop, M. S., &Sherman, S. M. Visual discrimination during eyelid closure in the cat.Brain Research, 1977,128, 329–339.

    PubMed  Article  Google Scholar 

  204. MacKay, D. M. Visual noise as a tool of research.Journal of General Psychology, 1965,72, 181–197.

    PubMed  Article  Google Scholar 

  205. Maffei, L., &Bisti, S. Binocular interaction in strabismic kittens deprived of vision.Science, 1976,191, 579–580.

    PubMed  Article  Google Scholar 

  206. Maffei, L., &Fiorentini, A. Retinogeniculate convergence and analysis of contrast.Journal of Neurophysiology, 1972,35, 65–72.

    PubMed  Google Scholar 

  207. Maffei, L., &Fiorentini, A. The visual cortex as a spatial frequency analyser.Vision Research, 1973,13, 1255–1267.

    PubMed  Article  Google Scholar 

  208. Maffei, L., &Fiorentini, A. Geniculate neural plasticity in kittens after exposure to periodic gratings.Science, 1974,186, 447–449.

    PubMed  Article  Google Scholar 

  209. Maffei, L., &Fiorentini, A. Monocular deprivation in kittens impairs the spatial resolution of geniculate neurons.Nature, 1976,264, 754–755.

    PubMed  Article  Google Scholar 

  210. McIlwain, J. T. Receptive fields of optic tract axons and lateral geniculate cells: Peripheral extent and barbituate sensitivity.Journal of Neurophysiology, 1964,27, 1154–1173.

    PubMed  Google Scholar 

  211. Mitchell, D. E., Cynader, M., &Movshon, J. A. Recovery from effects of monocular deprivation in kittens.Journal of Comparative Neurology, 1977,176, 53–63.

    PubMed  Article  Google Scholar 

  212. Mitchell, D. E., Giffin, F., &Muir, D. Behavioural compensation of cats after early rotation of one eye.Experimental Brain Research, 1976,25, 109–113.

    Article  Google Scholar 

  213. Monasterio, F. M. De, Gouras, P., &Tolhurst, D. J. Spatial summation, response pattern and conduction velocity of ganglion cells of the rhesus monkey retina.Vision Research, 1976,16, 674–678.

    PubMed  Article  Google Scholar 

  214. Morris, V. B., &Marriot, F. H. The distribution of light in an image formed in the cat’s eye.Nature, 1961,190, 176–177.

    PubMed  Article  Google Scholar 

  215. Movshon, J. A. The velocity tuning of single units in cat striate cortex.Journal of Physiology, 1975,249, 445–468.

    PubMed  Google Scholar 

  216. Movshon, J. A. Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex.Journal of Physiology, 1976,261, 125–174. (a)

    PubMed  Google Scholar 

  217. Movshon, J. A. Reversal of the behavioral effects of monocular deprivation in the kitten.Journal of Physiology, 1976,261, 175–187. (b)

    PubMed  Google Scholar 

  218. Movshon, J. A., &Dursteler, M. R. Effects of brief periods of unilateral eye closure on the kitten’s visual system.Journal of Neurophysiology, 1976,40, 1255–1265.

    Google Scholar 

  219. Movshon, J. A., Thompson, I. D., &Tolhurst, D. J. Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.Journal of Physiology, 1978,283, 53–77. (a)

    PubMed  Google Scholar 

  220. Movshon, J. A., Thompson, I. D., &Tolhurst, D. J. Receptive field organization of complex cells in the cat’s striate cortex.Journal of Physiology, 1978,283, 79–99. (b)

    PubMed  Google Scholar 

  221. Movshon, J. A., Thompson, I. D., &Tolhurst, D. J. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex.Journal of Physiology, 1978,283, 101–120. (c)

    PubMed  Google Scholar 

  222. Muir, D., &Mitchell, D. E. Visual resolution and experience: Acuity deficits in cats following early selective visual deprivation.Science, 1973,180, 420–422.

    PubMed  Article  Google Scholar 

  223. Muir, D. W., &Mitchell, D. E. Behavioral deficits in cats following early selected visual exposure to contours of a single orientation.Brain Research, 1975,85, 459–477.

    PubMed  Article  Google Scholar 

  224. Nelson, J. I., &Frost, B. J. Orientation-selective inhibition from beyond the classic visual receptive field.Brain Research, 1978,139, 359–365.

    PubMed  Article  Google Scholar 

  225. Nelson, J. I., Kato, H., &Bishop, P. O. Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex.Journal of Neurophysiology, 1977,40, 260–283.

    PubMed  Google Scholar 

  226. Nelson, R. Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat.Journal of Comparative Neurology, 1977,172, 109–136.

    PubMed  Article  Google Scholar 

  227. Niimi, K., &Sprague, J. M. Thalamo-cortical organization of the visual system in the cat.Journal of Comparative Neurology, 1970,138, 219–250.

    PubMed  Article  Google Scholar 

  228. Nikara, T., Bishop, P. O., &Pettigrew, J. B. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex.Experimental Brain Research, 1968,69, 353–372.

    Google Scholar 

  229. Ogawa, T., Takimori, T., &Takahashi, Y. Intracellular recording and staining of cat’s lateral geniculate neurons.Brain Research, 1978,139, 35–41.

    PubMed  Article  Google Scholar 

  230. Olson, C. R., &Freeman, R. D. Progressive changes in kitten striate cortex during monocular vision.Journal of Neurophysiology, 1975,38, 26–32.

    PubMed  Google Scholar 

  231. Olson, C. R., &Freeman, R. D. Monocular deprivation and recovery during sensitive period in kittens.Journal of Neurophysiology, 1978,41, 65–74.

    PubMed  Google Scholar 

  232. Olson, C. R., &Pettigrew, J. D. Single units in visual cortex of kittens reared in stroboscope illumination.Brain Research, 1974,70, 189–204.

    PubMed  Article  Google Scholar 

  233. Orban, G. A., Kennedy, H.. & Maes, H. Influence of eccentricity on velocity characteristics of area 18 neurones in the cat.Brain Research, 1978,159, 391–395.

    PubMed  Article  Google Scholar 

  234. Orban, G. A., Kennedy, H., Maes, H., &Amblard, B. Cats reared in stroboscopic illumination: Velocity characteristics of area 18 neurons.Archives italiennes De Biologie, 1978,116, 413–419.

    PubMed  Google Scholar 

  235. Otsuka, R., &Hassler, R. Über Aufbau und Gliederung der corticalen Sehsphäre bei der Katze.Archive fur Psychiatrie und Nervenkrankheiten, 1962,203, 212–234.

    Article  Google Scholar 

  236. Packwood, J., &Gordon, B. Stereopsis in normal domestic cat, Siamese cat, and cat raised with alternate monocular occlusion.Journal of Neurophysiology, 1975,38, 1485–1499.

    PubMed  Google Scholar 

  237. Palmer, L. A., Rosenquist, A. C., &Tusa, R. J. The retinotopic organization of lateral suprasylvian visual areas in the cat.Journal of Comparative Neurology, 1978,177, 237–258.

    PubMed  Article  Google Scholar 

  238. Peck, C. K., Blakemore, C. Modification of single neurons in the kitten’s visual cortex after brief periods of monocular visual experiences.Experimental Brain Research, 1975,22, 57–68.

    Article  Google Scholar 

  239. Peck, C. K., &Crewther, S. G. Perceptual effects of surgical rotation of the eye in kittens.Brain Research, 1975,99, 213–219.

    PubMed  Article  Google Scholar 

  240. Pettigrew, J. D. Binocular neurones which signal change of disparity in area 18 of cat visual cortex.Nature, 1973,241, 123–124.

    Article  Google Scholar 

  241. Pettigrew, J. D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones.Journal of Physiology, 1974,237, 49–74.

    PubMed  Google Scholar 

  242. Pettigrew, J. D., &Freeman, R. D. Visual experience without lines: Effects on developing cortical neurons.Science, 1973,182, 599–601.

    PubMed  Article  Google Scholar 

  243. Pettigrew, J. D., &Kasamatsu, T. Local perfusion of nor-adrenaline maintains visual cortical plasticity.Nature, 1978,271, 761–763.

    PubMed  Article  Google Scholar 

  244. Pettigrew, J. D., Nikara, T., &Bishop, P. O. Responses to moving slits by single units in cat striate cortex.Experimental Brain Research, 1968,6, 373–390. (a)

    Google Scholar 

  245. Pettigrew, J. D., Nikara, T., &Bishop, P. O. Binocular interaction on single units in cat striate cortex: Simultaneous stimulation by single moving slit with receptive fields in correspondence.Experimental Brain Research, 1968,6, 391–416. (b)

    Google Scholar 

  246. Pettigrew, J. D., Olson, C., &Hirsch, H. V. B. Cortical effect of selective visual experience: Degeneration or reorganization?Brain Research, 1973,51, 345–351.

    PubMed  Article  Google Scholar 

  247. Poggio, G. F., &Fischer, B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus mon key.Journal of Neurophysiology, 1977,40, 1392–1405.

    PubMed  Google Scholar 

  248. Pollen, D. A., &Ronner, S. F. Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat.Journal of Physiology, 1975,245, 667–697.

    PubMed  Google Scholar 

  249. Ringo, J., Wolbarsht, M. L., Wagner, H. G., Crocker, R., &Amthor, F. Trichromatic vision in the cat.Science, 1977,198, 753–755.

    PubMed  Article  Google Scholar 

  250. Rizzolatti, G., &Tradardi, V. Pattern discrimination in monocularly reared cats.Experimental Neurology, 1971,33, 181–194.

    PubMed  Article  Google Scholar 

  251. Rodieck, R. W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli.Vision Research, 1965,5, 583–601.

    PubMed  Article  Google Scholar 

  252. Rodieck, R. W., &Stone, J. Analysis of receptive fields of cat retinal ganglion cells.Journal of Neurophysiology, 1965,28, 833–849.

    Google Scholar 

  253. Rose, D. Mechanisms underlying the receptive field properties of neurons in cat visual cortex.Vision Research, 1979,19, 533–544.

    PubMed  Article  Google Scholar 

  254. Rose, D., &Blakemore, C. An analysis of orientation selectivity in the cat’s visual cortex.Experimental Brain Research, 1974,20, 1–17.

    Article  Google Scholar 

  255. Rose, D., &Blakemore, C. Functions of inhibition in visual cortex: Effects of bicuculline.Nature, 1974,249, 375–377.

    PubMed  Article  Google Scholar 

  256. Rowe, M., &Stone, J. Conduction velocity groupings among axons of cat retinal ganglion cells, and their relationship to retinal topography.Experimental Brain Research, 1976,25, 349–357.

    Article  Google Scholar 

  257. Sanderson, K. J., Bishop, P. O., &Darian-Smith, I. The properties of the binocular receptive fields of lateral geniculate neurons.Experimental Brain Research, 1971,13, 178–207.

    Google Scholar 

  258. Schechter, P. V., &Murphy, E. H. Brief monocular visual experience and kitten cortical binocularity.Brain Research, 1976,109, 165–168.

    PubMed  Article  Google Scholar 

  259. Schiller, P. H., Finlay, B. L., &Volman, S. F. Quantitative studies of single-cell properties in monkey striate cortex.Journal of Neurophysiology, 1976,39, 1288–1374.

    PubMed  Google Scholar 

  260. Sekuler, R. Spatial vision.Annual Review of Psychology, 1974,25, 195–232.

    PubMed  Article  Google Scholar 

  261. Shapley, R. M., &Victor, J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells.Journal of Physiology, 1978,285, 275–298.

    PubMed  Google Scholar 

  262. Shatz, C. J., Lindstrom, S., &Wiesel, T. N. The distribution of afferents representing the right and left eyes in the cat’s visual cortex.Brain Research, 1977,131, 103–116.

    PubMed  Article  Google Scholar 

  263. Shatz, C. J., &Stryker, M. P. Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation.Journal of Physiology, 1978,281, 267–283.

    PubMed  Google Scholar 

  264. Sherk, H. Area 18 cell responses in cat during reversible inactivation of area 17.Journal of Neurophysiology, 1978,41, 204–215.

    PubMed  Google Scholar 

  265. Sherman, S. M. Visual field defects in monocularly and binocularly deprived cats.Brain Research, 1973,49, 23–45.

    Google Scholar 

  266. Sherman, S. M. Permanence of visual perimetry deficits in monocularly and binocularly deprived cats.Brain Research, 1974,73, 491–501.

    PubMed  Article  Google Scholar 

  267. Sherman, S. M., &Guillery, R. W. Behavioral studies of binocular competition in cats.Vision Research, 1976,16, 1479–1481.

    PubMed  Article  Google Scholar 

  268. Sherman, S. M., Guillery, R. W., Kaas, J. H., &Sanderson, K. J. Behavioral, electrophysiological and morphological studies of binocular competition in the development of the geniculocortical pathways of cats.Journal of Comparative Neurology, 1974,158, 1–18.

    PubMed  Article  Google Scholar 

  269. Sherman, S. M., Hoffman, K. P., &Stone, J. Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats.Journal of Physiology, 1972,35, 532–541.

    Google Scholar 

  270. Sherman, S. M., &Stone, J. Physiological normality of the retina in visually deprived cats.Brain Research, 1973,60, 224–230.

    PubMed  Article  Google Scholar 

  271. Sherman, S. M., Watkins, D., &Wilson, J. R. Further differences in receptive field properties of simple and complex cells in cat striate cortex.Vision Research, 1976,16, 819–928.

    Article  Google Scholar 

  272. Sherman, S. M., Wilson, J. R., &Guillery, R. W. Evidence that binocular competition affects the postnatal development of Y-cells in the cat’s lateral geniculate nucleus.Brain Research, 1975,100, 441–444.

    PubMed  Article  Google Scholar 

  273. Shinkman, P. G., &Bruce, C. J. Binocular differences in cortical receptive fields of kittens after rotationally disparate binocular experience.Science, 1977,197, 285–287.

    PubMed  Article  Google Scholar 

  274. Shlaer, S. Shift in binocular disparity causes compensatory change in the cortical structure of kittens.Science, 1971,173, 638–641.

    PubMed  Article  Google Scholar 

  275. Sillito, A. M. Modification of the receptive field properties of neurones in the visual cortex by bicuculline, a GABA antagonist.Journal of Physiology, 1974,239, 39P-40P.

    Google Scholar 

  276. Singer, W. Modification of orientation and direction selectivity of cortical cells in kittens with monocular vision.Brain Research, 1976,118, 460–468.

    PubMed  Article  Google Scholar 

  277. Singer, W. The effect of monocular deprivation on cat parastriate cortex: Asymmetry between crossed and uncrossed pathways.Brain Research, 1978,157, 351–355.

    PubMed  Article  Google Scholar 

  278. Singer, W., &Creutzfeldt, O. Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat.Experimental Brain Research, 1970,10, 311–330.

    Article  Google Scholar 

  279. Singer, W., Poppel, E., &Creutzfeldt, O. Inhibitory interaction in the cat’s lateral geniculate nucleus.Experimental Brain Research, 1972,14, 210–226.

    Article  Google Scholar 

  280. Singer, W., &Tretter, F. Unusually large receptive field in cats with restricted visual experience.Experimental Brain Research, 1976,26, 171–184. (a)

    Article  Google Scholar 

  281. Singer, W., &Tretter, F. Receptive-field properties and neuronal connectivity in striate and parastriate cortex of contour-deprived cats.Journal of Neurophysiology, 1976,39, 613–630. (b)

    PubMed  Google Scholar 

  282. Smith, D. C., Spear, D., &Kratz, K. E. Role of visual experience in postcritical-period reversal of effects of monocular deprivation in cat striate cortex.Journal of Comparative Neurology, 1978,178, 313–328.

    PubMed  Article  Google Scholar 

  283. Smith, E. L., Bennett, M. J., Harwerth, R. S., &Crawford, M. L. J. Binocularity in kittens reared with optically induced squint.Science, 1979,204, 875–877.

    PubMed  Article  Google Scholar 

  284. Spear, P., &Baumann, T. Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat.Journal of Neurophysiology, 1975,38, 1403–1420.

    PubMed  Google Scholar 

  285. Spear, P. D., &Ganz, L. Effects of visual cortex lesions following recovery from monocular deprivation in the cat.Experimental Brain Research, 1975,23, 181–201.

    Article  Google Scholar 

  286. Spear, P., Smith, D., &Williams, L. Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus.Journal of Neurophysiology, 1977,40, 390–409.

    PubMed  Google Scholar 

  287. Spinelli, D. N., &Barrett, T. W. Visual receptive field organization of single units in the cat’s visual cortex.Experimental Neurology, 1969,24, 76–98.

    PubMed  Article  Google Scholar 

  288. Spitzberg, R., &Richards, W. Broad band spatial filters in the human visual system.Vision Research, 1975,15, 837–841.

    Article  Google Scholar 

  289. Steinberg, R. H.. Reid, M., &Lacy, P. L. The distribution of rods and cones in the retina of the cat (Felis domesticus).Journal of Comparative Neurology, 1973,148, 229–248.

    PubMed  Article  Google Scholar 

  290. Stevens, J. K., &Gerstein, G. L. Spatiotemporal organization of cat lateral geniculate receptive fields.Journal of Neurophysiology, 1976.39, 213–238. (a)

    PubMed  Google Scholar 

  291. Stevens, J. K., &Gerstein, G. L. Interaction between cat lateral geniculate neurons.Journal of Neurophysiology, 1976,39, 239–256. (b)

    PubMed  Google Scholar 

  292. Stone, J. A quantitative analysis of the distribution of ganglion cells in the cat’s retina.Journal of Comparative Neurology, 1965,124, 337–352.

    PubMed  Article  Google Scholar 

  293. Stone, J. Morphology and physiology of the geniculocortical synapse in the cat: The question of parallel input to the striate cortex.Investigative Ophthalmology, 1972,11, 338–346.

    PubMed  Google Scholar 

  294. Stone, J. The number and distribution of ganglion cells in the cat’s retina.Journal of Comparative Neurology, 1978,180, 753–772.

    PubMed  Article  Google Scholar 

  295. Stone, J., &Dreher, B. Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex.Journal of Neurophysiology, 1973,36, 551–567.

    PubMed  Google Scholar 

  296. Stone, J., &Freeman, R. B. Neurophysiological mechanisms in the visual discrimination of form. In R. Jung (Ed.),Handbook of sensory physiology (VII/3; chap. 2). Berlin: Springer-Verlag, 1973.

    Google Scholar 

  297. Stone, J., &Fukada, Y. Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells.Journal of Neurophysiology, 1974,37, 722–748.

    PubMed  Google Scholar 

  298. Stone, J., &Hansen, S. M. The projection of the cat’s retina on the lateral geniculate nucleus.Journal of Comparative Neurology, 1966,126, 601–624.

    PubMed  Google Scholar 

  299. Stone, J., &Hoffmann, K. P. Very slow-conducting ganglion cells in the cat’s retina: A major, new functional type?Brain Research, 1972,43, 610–616.

    PubMed  Article  Google Scholar 

  300. Stryker, M. P., Hubel, D. H.. & Wiesel, T. N. Orientation columns in the cat’s visual cortex.Neuroscience Abstracts, 1977,3, 1852.

    Google Scholar 

  301. Stryker, M. P., &Shatz, C. J. Ocular dominance in layer IV of the normal and deprived cat’s visual cortex.Neuroscience Abstracts, 1976,2, 1137.

    Google Scholar 

  302. Sthyker, M. P., Sherk, H., Leventhal, A. G., &Hirsch, H. V. B. Physiological consequences for the cat’s visual cortex of effectively restricting early visual experience with oriented contours.Journal of Neurophysiology, 1978,41, 896–909.

    Google Scholar 

  303. Stryker, M. P., &Sherk, H. A. Modification of cortical orientation selectivity in the cat by restricted visual experience: A reexamination.Science, 1975,190, 803–906.

    Article  Google Scholar 

  304. Suzuki, H., &Taira, N. Effect of reticular stimulation upon synaptic transmission in the cat’s lateral geniculate body.Japanese Journal of Physiology, 1961,2, 641–655.

    Google Scholar 

  305. Szentagothai, J. Synaptology of the visual cortex. In R. Jung (Ed.),Handbook of sensory physiology (Vol. 7/3). Berlin: Springer-Verlag, 1973.

    Google Scholar 

  306. Szentagothai, J., Hamori, J., &Tombol, T. Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body.Experimental Brain Research, 1960,2, 283–301.

    Google Scholar 

  307. Thorn, F., Gollender, M., &Erickson, P. The development of the kitten’s visual optics.Vision Research, 1976,16, 1145–1150.

    PubMed  Article  Google Scholar 

  308. Thorpe, P. A., &Blakemore, C. Evidence for a loss of afferent axons in the visual cortex of monocularly deprived cats.Neuroscience Letters, 1975,1, 271–276.

    PubMed  Article  Google Scholar 

  309. Timney, B., Mitchell, D. E., &Giffin, F. The development of vision in cats after extended periods of dark-rearing.Experimental Brain Research, 1978,31, 547–560.

    Article  Google Scholar 

  310. Tolhurst, D. J. Separate channels for the analysis of the shape and the movement of a moving visual stimulus.Journal of Physiology, 1973,231, 385–402.

    PubMed  Google Scholar 

  311. Tolhurst, D. J. Sustained and transient channels in human vision.Vision Research, 1975,15, 1151–1155.

    PubMed  Article  Google Scholar 

  312. Tombol, T. Two types of short axon (Golgi 2nd) interneurones in the specific thalamic nuclei.Acta Morphologica Academia du Science, Hungary, 1969,17, 285–297.

    Google Scholar 

  313. Tretter, F., Cynader, M., &Singer, W. Modification of direction selectivity of neurons in the visual cortex of kittens.Brain Research, 1975,84, 143–149.

    PubMed  Article  Google Scholar 

  314. Tusa, R. J., Palmer, L. A., &Rosenquist, A. C. The retinotopic organization of area 17 in the cat.Journal of Comparative Neurology, 1978,177, 213–236.

    PubMed  Article  Google Scholar 

  315. Updyke, B. V. The pattern of projections of cortical areas 17, 18 and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat.Journal of Comparative Neurology, 1975,163, 377–395.

    PubMed  Article  Google Scholar 

  316. Vakkur, G. J., &Bishop, P. O. The schematic eye in the cat.Vision Research, 1963,3, 357–381.

    Article  Google Scholar 

  317. Vakkur, G. J., Bishop, P. O., &Kozak, W. Visual optics in the cat including posterior nodal distance and retinal land-marks.Vision Research, 1963,3, 289–314.

    Article  Google Scholar 

  318. Van Essen, D. C., &Kelly, J. P. Correlation of cell shape and function in the visual cortex of the cat.Nature, 1973,241, 403–405.

    PubMed  Article  Google Scholar 

  319. Van Hoff-Van Duin, J. Early and permanent effects of monocular deprivation on pattern discrimination and visuomotor behavior in cats.Brain Research, 1976,111, 261–276. (a)

    Article  Google Scholar 

  320. Van Hoff-Van Duin, J. Development of visuomotor behavior in normal and dark-reared cats.Brain Research, 1976,104, 233–241. (b)

    Article  Google Scholar 

  321. Van Hoff-Van Duin, J. Visual field measurements in monocularly deprived and normal cats.Experimental Brain Research, 1977,30, 353–368.

    Article  Google Scholar 

  322. Van Sluyters, R. C. Reversal of the physiological effects of brief periods of monocular deprivation in the kitten.Journal of Physiology, 1978,284, 1–17.

    PubMed  Google Scholar 

  323. Van Sluyters, R. C, &Blakemore, C. Experimental creation of unusual neuronal properties in visual cortex of kitten.Nature, 1973,246, 506–508.

    PubMed  Article  Google Scholar 

  324. Van Sluyters, R. C, & Freeman, R. D. The physiological effects of monocular deprivation in very young kittens.Neuroscience Abstracts, 1977,3, 1384.

    Google Scholar 

  325. Vital-Durand, R., &Jeannerod, M. Maturation of the optokinetic response: Genetic and environmental facts.Brain Research, 1974,71, 249–257.

    PubMed  Article  Google Scholar 

  326. Vital-Durand, R., &Jeannerod, M. Eye movement related activity in the visual cortex of dark-reared kittens.Electroencephalography and Clinical Neurophysiology, 1975,38, 295–301.

    PubMed  Article  Google Scholar 

  327. Von Noorden, G. K. Mechanisms of Ablyopia.Advances in Opthalmology, 1977,34, 83–115.

    Google Scholar 

  328. Walls, G. L.The vertebrate eye and its adaptive radiation. New York: Hafner, 1942.

    Google Scholar 

  329. Wan, Y. K., &Cragg, B. Cell growth in the lateral geniculate nucleus of kittens following the opening or closing of one eye.Journal of Comparative Neurology, 1976,166, 365–373.

    PubMed  Article  Google Scholar 

  330. Wassle, H. Optical quality of the cat eye.Vision Research, 1971,11, 895–1006.

    Article  Google Scholar 

  331. Wassle, H., Levick, W. R., &Cleland, B. G. The distribution of the alpha type of ganglion cells in the cat’s retina.Journal of Comparative Neurology, 1975,159, 419–437.

    PubMed  Article  Google Scholar 

  332. Watkins, D. W., &Berkley, M. A. The orientation selectivity of single neurons in cat striate cortex.Experimental Brain Research, 1974,19, 433–446.

    Article  Google Scholar 

  333. Weale, R. A. The spectral reflectivity of the cat’s tapetum measured in situ.Journal of Physiology, 1953,119, 30–42.

    PubMed  Google Scholar 

  334. Westheimer, G. Line-spread function of living cat eye.Journal of the Optical Society of America, 1962,52, 1326.

    Article  Google Scholar 

  335. Westheimer, G. Optical properties of vertebrate eyes. In M. G. F. Fuortes (Ed.),Handbook of sensory physiology (Vol. VII/2). Berlin: Springer-Verlag, 1972.

    Google Scholar 

  336. Whitteridge, D. Projection of optic pathways to the visual cortex. In R. Jung (Ed.),Handbook of sensory physiology (Vol. 7/3). Berlin: Springer-Verlag, 1973.

    Google Scholar 

  337. Wickelgren-Gordon, B. Some effects of visual deprivation on the cat superior colliculus.Investigative Ophthalmology, 1972,11, 460–467.

    PubMed  Google Scholar 

  338. Wiesel, T. N. Receptive fields of ganglion cells in cat’s retina.Journal of Physiology, 1960,153, 583–594.

    PubMed  Google Scholar 

  339. Wiesel, T. N., &Hubel, D. H. Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body.Journal of Physiology, 1963,26, 878–993. (a)

    Google Scholar 

  340. Wiesel, T. N., &Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye.Journal of Neurophysiology, 1963,26, 1003–1017. (b)

    PubMed  Google Scholar 

  341. Wiesel, T. N., &Hubel, D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical responses in kittens.Journal of Neurophysiology, 1965,28, 1029–1040. (a)

    PubMed  Google Scholar 

  342. Wiesel, T. N., &Hubel, D. H. Extent of recovery from the effects of visual deprivation in kittens.Journal of Neurophysiology, 1965,28, 1060–1072. (b)

    PubMed  Google Scholar 

  343. Wiesel, T. N., &Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey.Journal of Neurophysiology, 1960,29, 1115–1156.

    Google Scholar 

  344. Wilcox, J. G. , & Barlow, H. B. The size and shape of the pupil in lightly anesthetized cats as a function of luminance.Vision Research, 1975,15, 1363–1366.

    PubMed  Article  Google Scholar 

  345. Wilson, J. R., &Sherman, S. M. Receptive field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity.Journal of Neruophysiology, 1976,39, 512–532.

    Google Scholar 

  346. Wilson, J. R., &Sherman, S. M. Differential effects of early monocular deprivation on binocular and monocular segments of the cat striate cortex.Journal of Neruophysiology, 1977,40, 891–903.

    Google Scholar 

  347. Wilson, M. E. Cortico-cortical connexions of the cat visual areas.Journal of Anatomy, 1968,102, 375–386.

    PubMed  Google Scholar 

  348. Wilson, P., Rowe, M., &Stone, J. Properties of relay cells in cat’s lateral geniculate nucleus: A comparison of W-cells with X- and Y-cells.Journal of Neurophysiology, 1976,39, 1193–1209.

    PubMed  Google Scholar 

  349. Wilson, P. D., &Stone, J. Evidence of W-cell input to the cat’s visual cortex via the C-laminae of the lateral geniculate nucleus.Brain Research, 1975,92, 472–478.

    PubMed  Article  Google Scholar 

  350. Yinon, U. Age dependence of the effect of squint on cells in kitten’s visual cortex.Experimental Brain Research, 1976,26, 151–157. (a)

    Article  Google Scholar 

  351. Yinon, U. Eye rotation surgically induced in cats modifies properties of cortical neurons.Experimental Neurology, 1976,51, 603–627. (b)

    PubMed  Article  Google Scholar 

  352. Yinon, U. Inverted vision in adult cats: Preservation of unidirectionality in cortical neurons.Brain Research, 1977,120, 164–166.

    PubMed  Article  Google Scholar 

  353. Yinon, U., Averbach, E., Blank, M., &Friesenhausen, J. The ocular dominance of cortical neurons in cats developed with divergent and convergent squint.Vision Research, 1975,15, 1251–1256.

    PubMed  Article  Google Scholar 

  354. Zablocka, T. Go-no differentiation to visual stimuli in cats with different early visual experiences.Acta Neurobiologia Experentia, 1975,35, 399–402.

    Google Scholar 

  355. Zablocka, T., Konorski, J., &Zernicki, B. Visual discrimination learning in cats with different early visual experiences.Acta Neurobiologia Experentia, 1975,35, 389–398.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Randolph Blake.

Additional information

This paper was prepared while the author held a Career Development Award from the National Institutes of Health (EY00106) and research grants from the National Science Foundation (BNS7817948) and the National Institutes of Health (EY01596).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blake, R. The visual system of the cat. Perception & Psychophysics 26, 423–448 (1979). https://doi.org/10.3758/BF03204283

Download citation

Keywords

  • Visual Cortex
  • Receptive Field
  • Retinal Ganglion Cell
  • Lateral Geniculate Nucleus
  • Experimental Brain Research