Abstract
GPOWER is a completely interactive, menu-driven program for IBM-compatible and Apple Macintosh personal computers. It performs high-precision statistical power analyses for the most common statistical tests in behavioral research, that is,t tests,F tests, andχ 2 tests. GPOWER computes (1) power values for given sample sizes, effect sizes andα levels (post hoc power analyses); (2) sample sizes for given effect sizes,α levels, and power values (a priori power analyses); and (3)α andβ values for given sample sizes, effect sizes, andβ/α ratios (compromise power analyses). The program may be used to display graphically the relation between any two of the relevant variables, and it offers the opportunity to compute the effect size measures from basic parameters defining the alternative hypothesis. This article delineates reasons for the development of GPOWER and describes the program’s capabilities and handling.
References
Bargmann, R. E., &Ghosh, S. P. (1964).Noncentral statistical distribution programs for a computer language (IBM Research Report RC-1231). Yorktown Heights, NY: IBM Watson Research Center.
Borenstein, M., &Cohen, J. (1988).Statistical power analysis: A computer program. Hillsdale, NJ: Erlbaum.
Borenstein, M., Cohen, J., Rothstein, H. R., Pollack, S., &Kane, J. M. (1990). Statistical power analysis for one-way analysis of variance: A computer program.Behavior Research Methods, Instruments, & Computers,22, 271–282.
Borenstein, M., Cohen, J., Rothstein, H. R., Pollack, S., &Kane, J. M. (1992). A visual approach to statistical power analysis on the microcomputer.Behavior Research Methods, Instruments, & Computers,24, 565–572.
Bredenkamp, J. (1972).Der Signifikanztest in der psychologischen Forschung [The test of significance in behavioral research]. Frankfurt, Germany: Akademische Verlagsgesellschaft.
Bredenkamp, J. (1980).Theorie und Planung psychologischer Experimente [Theory and design of psychological experiments]. Darmstadt, Germany: Steinkopff.
Bredenkamp, J., &Erdfelder, E. (1985).Multivariate Varianzanalyse nach dem V-Kriterium [Multivariate analysis of variance using the V-criterion].Psychologische Beiträge,27, 127–154.
Buchner, A., Faul, F., &Erdfelder, E. (1992).GPOWER: A priori-, post hoc-, and compromise power analyses for the Macintosh [Computer program]. Bonn, Germany: Bonn University.
Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review.Journal of Abnormal & Social Psychology,65, 145–153.
Cohen, J. (1965). Some statistical issues in psychological research. In B. B. Wolman (Ed.),Handbook of clinical psychology (pp. 95–121). New York: McGraw-Hill.
Cohen, J. (1969).Statistical power analysis for the behavioral sciences. New York: Academic Press.
Cohen, J. (1977).Statistical power analysis for the behavioral sciences (rev. ed.). New York: Academic Press.
Cohen, J. (1988).Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, J. (1992). A power primer.Psychological Bulletin,112, 155–159.
Cohen, J., &Cohen, P. (1983).Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cowles, M., &Davis, C. (1982). On the origins of the.05 level of statistical significance.American Psychologist,37, 553–558.
Dixon, W. F., &Massey, F. J., Jr. (1957).Introduction to statistical analysis (2nd ed.). New York: McGraw-Hill.
Erdfelder, E. (1984). Zur Bedeutung und Kontrolle des β-Fehlers bei der inferenzstatistischen Prüfung log-linearer Modelle [On significance and control of the β error in statistical tests of log-linear models].Zeitschrift für Sozialpsychologie,15, 18–32.
Erdfelder, E., &Bredenkamp, J. (1994). Hypothesenprüfung [Evaluation of hypotheses]. In T. Herrmann & W. H. Tack (Eds.),Methodologische Grundlagen der Psychologie (pp. 604–648). Göttingen, Germany: Hogrefe.
Faul, F., &Erdfelder, E. (1992).GPOWER: A priori-, post hoc-, and compromise power analyses for MS-DOS [Computer program]. Bonn, Germany: Bonn University.
Gigerenzer, G. (1993). The superego, the ego, and the id in statistical reasoning. In G. Keren & C. Lewis (Eds.),A handbook for data analysis in the behavioral sciences: Methodological issues (pp. 311–339). Hillsdale, NJ: Erlbaum.
Gigerenzer, G., &Murray, D. J. (1987).Cognition as intuitive statistics. Hillsdale, NJ: Erlbaum.
Goldstein, R. (1989). Power and sample size via MS/PC-DOS computers.American Statistician,43, 253–260.
Hager, W., &Möller, H. (1986). Tables and procedures for the determination of power and sample sizes in univariate and multivariate analyses of variance and regression.Biometrical Journal,28, 647–663.
Hardison, C. D., Quade, D., &Langston, R. D. (1983). Nine functions for probability distributions. In SAS Institute, Inc. (Ed.),SUGI supplemental library user’s guide, 1983 edition (pp. 229–236). Cary, NC: SAS Institute, Inc.
Huff, C., &Sobiloff, B. (1993). MacPsych: An electronic discussion list and archive for psychology concerning the Macintosh computer.Behavior Research Methods, Instruments, & Computers,25, 60–64.
Johnson, N. L., &Kotz, S. (1970).Distributions in statistics: Continuous univariate distributions-2. New York: Wiley.
Koele, P. (1982). Calculating power in analysis of variance.Psychological Bulletin,92, 513–516.
Koele, P., &Hoogstraten, J. (1980).Power and sample size calculations in analysis of variance (Révész Berichten No. 12). Amsterdam: University of Amsterdam.
Kraemer, H. C., &Thiemann, S. (1987).How many subjects? Statistical power analysis in research. Newbury Park, CA: Sage.
Laubscher, N. F. (1960). Normalizing the noncentralt andF distributions.Annals of Mathematical Statistics,31, 1105–1112.
Lehmann, E. L. (1975).Nonparametrics. Statistical methods based on ranks. San Francisco: Holden-Day.
Lipsey, M. W. (1990).Design sensitivity: Statistical power for experimental research. Newbury Park, CA: Sage.
Milligan, G. W. (1979). A computer program for calculating power of the chi-square test.Educational & Psychological Measurement,39, 681–684.
Oakes, M. (1986).Statistical inference: A commentary for the social and behavioral sciences. New York: Wiley.
O’Brien, R. G., &Muller, K. E. (1993). Unified power analysis fort-tests through multivariate hypotheses. In L. K. Edwards (Ed.),Applied analysis of variance in behavioral science (pp. 297–344). New York: Marcel Dekker.
Onghena, P. (1994).The power of randomization tests for single-case designs. Unpublished doctoral dissertation. Leuven, Belgium: Katholieke Universiteit Leuven.
Onghena, P., &Van Damme, G. (1994). SCRT 1.1: Single-case randomization tests.Behavior Research Methods, Instruments, & Computers,26, 369.
Patnaik, P. B. (1949). The non-central χ2- andF-distributions and their applications.Biometrika,36, 202–232.
Pollard, P., &Richardson, J. T. E. (1987). On the probability of making type I errors.Psychological Bulletin,102, 159–163.
Press, W. H., Flannery, B. P., Teukolsky, S. A., &Vetterling, W. T. (1988).Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.
Rossi, J. S. (1990). Statistical power of psychological research: What have we gained in 20 years?Journal of Consulting & Clinical Psychology,58, 646–656.
Rothstein, H., Borenstein, M., Cohen, J., &Pollack, S. (1990). Statistical power analysis for multiple regression/correlation: A computer program.Educational & Psychological Measurement,50, 819–830.
Sedlmeier, P., &Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies?Psychological Bulletin,105, 309–316.
Singer, B., Lovie, A. D., &Lovie, P. (1986). Sample size and power. In A. D. Lovie (Ed.),New developments in statistics for psychology and the social sciences (pp. 129–142). London: British Psychological Society and Methuen.
Tversky, A., &Kahneman, D. (1971). Belief in the law of small numbers.Psychological Bulletin,76, 105–110.
Westermann, R., &Hager, W. (1986). Error probabilities in educational and psychological research.Journal of Educational Statistics,11, 117–146.
Author information
Authors and Affiliations
Corresponding authors
Additional information
The authors would like to thank S. Dilger for performing the evaluation of the GPOWER accuracy mode calculations and J. Bredenkamp as well as several anonymous reviewers for helpful comments on earlier drafts of this paper. We also are grateful to V. Fischer, P. Frensch, J. Funke, P. Onghena, R. Pohl, E. Stirner, and I. Wegener, who served as beta testers of GPOWER.
Rights and permissions
About this article
Cite this article
Erdfelder, E., Faul, F. & Buchner, A. GPOWER: A general power analysis program. Behavior Research Methods, Instruments, & Computers 28, 1–11 (1996). https://doi.org/10.3758/BF03203630
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/BF03203630
Keywords
- Power Analysis
- Speed Mode
- Statistical Power Analysis
- Effect Size Measure
- Noncentrality Parameter