Skip to main content

Quest: A Bayesian adaptive psychometric method

Abstract

An adaptive psychometric procedure that places each trial at the current most probable Bayesian estimate of threshold is described. The procedure takes advantage of the common finding that the human psychometric function is invariant in form when expressed as a function of log intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any computer.

Reference Note

  1. 1.

    Klein, S. Rapid determination of the psychometric function. Paper presented at the annual meeting of the American Academy of Optometry, Orlando, Florida, December 1981.

References

  1. Cornsweet, T. N. The staircase-method in psychophysics.American Journal of Psychology, 1962,75, 485–491.

    PubMed  Article  Google Scholar 

  2. Green, D. M., &Luce, R. D. Parallel psychometric functions from a set of independent detectors.Psychological Review, 1975,82, 483–486.

    Article  Google Scholar 

  3. Hall, J. L. Maximum-likelihood sequential procedure for estimation of psychometric functions.Journal of the Acoustical Society of America, 1968,44, 370. (Abstract)

    Article  Google Scholar 

  4. Hall, J. L. Hybrid adaptive procedure for estimation of psychometric functions.Journal of the Acoustical Society of America, 1981,69, 1763–1769.

    PubMed  Article  Google Scholar 

  5. Hoel.P. G., Port, S. C., &Stone, C. J.Introduction to statistical theory. Boston: Houghton Mifflin, 1971.

    Google Scholar 

  6. Levitt, H. Transformed up-down methods in psychoacoustics.Journal of the Acoustical Society of America, 1971,49, 467–477.

    PubMed  Article  Google Scholar 

  7. Massof, R. W. Wavelength dependence of the shape of the foveal absolute threshold probability of detection functions.Vision Research, 1981,21, 995–1004.

    PubMed  Article  Google Scholar 

  8. Nachmias, J. On the psychometric function for contrast detection,Vision Research, 1981,21, 215–223.

    PubMed  Article  Google Scholar 

  9. Pavel, M. A new adaptive method for forced-choice experiments.Journal of the Optical Society of America, 1981,71, S48. (Abstract)

    Google Scholar 

  10. Pentland, A. Maximum likelihood estimation: The best PEST.Perception & Psychophysics, 1980,28, 377–379.

    Google Scholar 

  11. Quick, R. F. A vector magnitude model of contrast detection.Kybernetik, 1974,16, 65–67.

    PubMed  Article  Google Scholar 

  12. Roufs, J. A. J. Dynamic properties of vision—VI. Stochastic threshold fluctuations and their effect on flash-to-flicker sensitivity ratio.Vision Research, 1974,14, 871–888.

    PubMed  Article  Google Scholar 

  13. Taylor, M. M. On the efficiency of psychophysical measurement.Journal of the Acoustical Society of America, 1971,49, 505–508.

    PubMed  Article  Google Scholar 

  14. Taylor, M. M., &Creelman, C. D. PEST: Efficient estimates on probability functions.Journal of the Acoustical Society of America, 1967,41, 782–787.

    Article  Google Scholar 

  15. Watson, A. B. Probability summation over time.Vision Research, 1979,19, 515–522.

    PubMed  Article  Google Scholar 

  16. Watson, A. B., &Pelli, D. G. The QUEST staircase procedure.Applied Vision Association Newsletter, 1979,14, 6–7.

    Google Scholar 

  17. Weibull, W. A. A statistical distribution function of wide applicability.Journal of Applied Mechanics, 1951,18, 292–297.

    Google Scholar 

  18. Wetherill, G. B., &Levitt, H. Sequential estimation of points on a psychometric function.British Journal of Mathematical and Statisttcal Psychology, 1965,18, 1–10.

    Google Scholar 

  19. Wilks, S. S.Mathematical statistics. New York: Wiley, 1962.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Watson.

Additional information

The QUEST procedure was developed at the Kenneth Craik Laboratory of Cambridge University. A.B.W. was supported by an NIH postdoctoral fellowship, F32 EY05219. D.G.P. was supported by a British Ministry of Defence grant, “Spatial noise spectra and target detection/recognition,” to F. W. Campbell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watson, A.B., Pelli, D.G. Quest: A Bayesian adaptive psychometric method. Perception & Psychophysics 33, 113–120 (1983). https://doi.org/10.3758/BF03202828

Download citation

Keywords

  • Psychometric Function
  • Final Estimate
  • Acoustical Society ofAmerica
  • Prior Density
  • Failure Function