Behavior Research Methods, Instruments, & Computers

, Volume 32, Issue 3, pp 458–463 | Cite as

A low-cost, accurate method of producing large quantities of digitally filtered images

  • Kenneth C. Scott-brownEmail author
  • Timothy R. Jordan


We demonstrate how to produce complex image transformations of bitmap files for vision experiments using the Cogimatic Vision Starter Kit (VSK) library of mathematical routines along with Visual Basic, C++, or the Delphi Pascal compiler. Implementing this system on an IBM-compatible PC running Windows 95, 98, or NT4 enables researchers to quickly and economically manipulate images for vision research. The VSK includes a simple stand-alone image-processing application. In addition, VSK has the ability to automate image transformations and to fully integrate image processing into new experimental software on the PC platform.


Spatial Frequency Vision Research Image Transformation Pattern Recognition System Psychophysics Toolbox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander, K. R., Xie, W., &Derlacki, D. J. (1994). Spatialfrequency characteristics of letter identification.Journal of the Optical Society of America A,11, 2375–2382.CrossRefGoogle Scholar
  2. Braddick, O., Campbell, F. W., &Atkinson, J. (1978). Channels in vision: Basic aspects. In R. Held, H. W. Leibowitz, & H.-L. Teuber (Eds.),Handbook of sensory physiology: Vol. 8: Perception (pp. 3–38). New York: Springer-Verlag.Google Scholar
  3. Brady, N., Bex, P. J., &Fredericksen, R. E. (1997). Independent coding across spatial scales in moving fractal images.Vision Research,37, 1873–1883.CrossRefPubMedGoogle Scholar
  4. Brainard, D. H. (1997). The psychophysics toolbox.Spatial Vision,10, 433–436.CrossRefPubMedGoogle Scholar
  5. Caelli, T., Dillon, C., Osman, E., &Krieger, G. (1997). The IPRS image processing and pattern recognition system.Spatial Vision,11, 107–115.CrossRefPubMedGoogle Scholar
  6. Campbell, F. W., &Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings.Journal of Physiology,197, 551–566.PubMedGoogle Scholar
  7. Fiorentini, A., Maffei, L., &Sandini, G. (1983). The role of high spatial frequencies in face perception.Perception,12, 195–201.CrossRefPubMedGoogle Scholar
  8. Graham, N. V. S. (1989).Visual pattern analyzers. New York: Oxford University Press.CrossRefGoogle Scholar
  9. Hogben, J. H., Pratt, C., Dedman, K., &Clark, C. D. (1996). Blurring the image does not help disabled readers.Vision Research,36, 1503–1507.CrossRefPubMedGoogle Scholar
  10. Jordan, T. R., &Scott-Brown, K. S. (1999).Word superiority effects with visually filtered strings: Evidence for coarse visual cues in word recognition. Paper presented at the July meeting of the Experimental Psychology Society, University of Durham.Google Scholar
  11. Jordan, T. R., &Scott-Brown, K. S. (2000).Word superiority effects with filtered strings: Evidence for coarse visual cues in word recognition. Manuscript in preparation.Google Scholar
  12. Landy, M. S., Cohen, Y., &Sperling, G. (1984a). HIPS: Image processing under UNIX. Software and applications.Behavior Research Methods, Instruments, & Computers,16, 199–216.Google Scholar
  13. Landy, M. S., Cohen, Y., &Sperling, G. (1984b). HIPS: A Unixbased image processing system.Computer Vision, Graphics, & Image Processing,25, 331–347.CrossRefGoogle Scholar
  14. Legge, G. E., Pelli, D. G., Rubin, G. S., &Schleske, M. M. (1985). Psychopyhsics of reading: 1. Normal vision.Vision Research,25, 239–252.CrossRefPubMedGoogle Scholar
  15. May, J. G., Brown, J. M., Scott, S., &Donlon, M. (1990). Visual persistence of spatially filtered images.Perception & Psychophysics,47, 563–567.CrossRefGoogle Scholar
  16. Olds, E. S., &Engel, S. A. (1998). Linearity across spatial frequency in object recognition.Vision Research,38, 2109–2118.CrossRefPubMedGoogle Scholar
  17. Parish, D. H., &Sperling, G. (1991). Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination.Vision Research,31, 1399–1415.CrossRefPubMedGoogle Scholar
  18. Parker, D. M., Lishman, J. R., &Hughes, J. (1992). Temporal integration of spatially filtered images.Perception,21, 147–160.CrossRefPubMedGoogle Scholar
  19. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies.Spatial Vision,10, 437–442.CrossRefPubMedGoogle Scholar
  20. Schyns, P. G., &Oliva, A. (1997). Flexible, diagnosticity driven, rather than fixed, perceptually determined scale selection in scene and face recognition.Perception,26, 1027–1038.CrossRefPubMedGoogle Scholar
  21. Solomon, J., &Pelli, D. (1994). The visual filter mediating letter identification.Nature,369, 395–397.CrossRefPubMedGoogle Scholar
  22. Watt, R. J. (1991).Understanding vision. London: Academic Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  1. 1.School of PsychologyUniversity ParkNottinghamEngland

Personalised recommendations