Advertisement

Behavior Research Methods, Instruments, & Computers

, Volume 32, Issue 3, pp 450–457 | Cite as

Motion pattern and posture: Correctly assessed by calibrated accelerometers

  • Friedrich Foerster
  • Jochen FahrenbergEmail author
Article

Abstract

Basic motion patterns and posture can be distinguished by multichannel accelerometry, as recently shown. A refinement of this method appeared to be desirable to further increase its effectiveness, especially to distinguish walking and climbing stairs, and body rotation during sleep. Recordings were made of 31 subjects, according to a standard protocol comprising 13 motions and postures. This recording was repeated three times with appropriate permutation. Five uni-axial sensors and three sites of placement (sternum with three axes, right and left thigh) were selected. A hierarchical classification strategy used a standard protocol (i. e., individual reference patterns) to distinguish subtypes of moving behaviors and posture. The analysis method of the actometer signals reliably detected 13 different postural and activity conditions (only 3.2 % misclassifications). A minimum set of sensors can be found for a given application; for example, a two-sensor configuration would clearly suffice to differentiate between four basic classes (sitting, standing, lying, moving) in ambulatory monitoring.

Keywords

Motion Pattern Body Rotation Climbing Stair Hierarchical Classification Ambulatory Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bouten, C. V. C., Verboeket-van de Venne, W. P. G., Westerterp, K. R., Verduin, M., &Janssen, J. D. (1996). Daily physical activity assessment: Comparison between movement registration and doubly labeled water.Journal of Applied Physiology,81, 1019–1026.PubMedGoogle Scholar
  2. Busser, H. J. (1994). Using the piezoresistive accelerometer in posture and motion monitoring. In P. H. Veltink & R. C. van Lummel (Eds.),Dynamic analysis using body fixed sensors: Second World Congress of Biomechanics (pp. 107–109). The Hague: McRoberts.Google Scholar
  3. Busser, H. J., Ott, J., van Lummel, R. C., Uiterwaal, M., &Blank, R. (1997). Ambulatory monitoring of children’s activity.Medical Engineering & Physics,19, 440–445.CrossRefGoogle Scholar
  4. Bussmann, H. (1998).Ambulatory monitoring of mobility-related activities in rehabilitation medicine. Delft: Eburon.Google Scholar
  5. Bussmann, J. B. J., Tulen, J. H. M., van Herel, E. C. G., &Stam, H. J. (1998). Quantification of physical activities by means of ambulatory accelerometry: A validation study.Psychophysiology,35, 488–496.CrossRefPubMedGoogle Scholar
  6. Bussmann, J. B. J., Veltink, P. H., Martens, W. L. J., &Stam, H. J. (1994). Activity monitoring with accelerometers. In P. H. Veltink & R. C. van Lummel (Eds.),Dynamic analysis using body fixed sensors: Second World Congress of Biomechanics (pp. 13–17). The Hague: McRoberts.Google Scholar
  7. Fahrenberg, J., Foerster, F., Müller, W., &Smeja, M. (1997). Assessment of posture and motion by multichannel piezoresistive accelerometer recordings.Psychophysiology,34, 607–612.CrossRefPubMedGoogle Scholar
  8. Fahrenberg, J., Müller, W., Foerster, F., &Smeja, M. (1996). A multichannel investigation of physical activity.Journal of Psychophysiology,10, 209–217.Google Scholar
  9. Fahrenberg, J., &Myrtek, M. (Eds.) (1996).Ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies. Seattle: Hogrefe & Huber.Google Scholar
  10. Foerster, F., &Smeja, M. (1999). Joint amplitude and frequency analysis of tremor activity.Electromyography & Clinical Neurophysiology,39, 11–19.Google Scholar
  11. Foerster, F., Smeja, M., &Fahrenberg, J. (1999). Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring.Computers & Human Behavior,15, 571–583.CrossRefGoogle Scholar
  12. Halmos, P. R. (1950).Measure theory. Princeton, NJ: Van Nostrand.Google Scholar
  13. Jain, A., Martens, W. L. J., Mutz, G., Weifl, R. K., &Stephan, E. (1996). Towards a comprehensive technology for recording and analysis of multiple physiological parameters within their behavioral and environmental context. In J. Fahrenberg & M. Myrtek (Eds.),Ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 215–235). Seattle: Hogrefe & Huber.Google Scholar
  14. Kiani, K., Snijders, C. J., &Gelsema, E. S. (1997). Computerized analysis of daily life motor activity for ambulatory monitoring.Technology & Health Care,5, 307–318.Google Scholar
  15. Martens, W. L. J. (1994). Exploring the information content and some applications of body mounted piezoresistive accelerometers. In P. H. Veltink & R. C. van Lummel (Eds.),Dynamic analysis using body fixed sensors: Second World Congress of Biomechanics (pp. 9–12). The Hague: McRoberts.Google Scholar
  16. Middelkoop, H. A. M., van Dam, E. M., Smilde-van den Doel, D. A., &van Dijk, G. (1997). 45-hour continuous quintuple-site actimetry: Relations between trunk and limb movements and effects of circadian sleep-wake rhythmicity.Psychophysiology,34, 199–203.CrossRefPubMedGoogle Scholar
  17. Myrtek, M., Brügner, G., &Müller, W. (1996). Interactive monitoring and contingency analysis of emotionally induced ECG changes: Methodology and applications. In J. Fahrenberg & M. Myrtek (Eds.),Ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 115–127). Seattle: Hogrefe & Huber.Google Scholar
  18. Patterson, S. M., Krantz, D. S., Montgomery, L. C., Deuster, P. A., Hedges, S. M., &Nebel, L. E. (1993). Automated physical activity monitoring: Validation and comparison with physiological and self-report measures.Psychophysiology,30, 296–305.CrossRefPubMedGoogle Scholar
  19. Pickering, T. G. (1991).Ambulatory monitoring and blood pressure variability. London: Science Press.Google Scholar
  20. Qian, S., &Chen, D. (1996).Joint time-frequency analysis: Method and application. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  21. Richardson, M. T., Leon, A. S., Jacobs, D. R., Ainsworth, B. E., &Serfass, R. (1995). Ability of the Caltrac accelerometer to assess daily physical activity levels.Journal of Cardiopulmonary Rehabilitation,15, 107–113.CrossRefPubMedGoogle Scholar
  22. Smeja, M., Foerster, F., Fuchs, G., Emmans, D., Hornig, A., &Fahrenberg, J. (1999). 24 hr assessment of tremor activity and posture in Parkinson’s disease by multichannel accelerometry.Journal of Psychophysiology,13, 245–256.CrossRefGoogle Scholar
  23. Tryon, W. W. (1991).Activity measurement in psychology and medicine. New York: Plenum.Google Scholar
  24. Tuomisto, M. T., Johnston, D.W., &Schmidt, T. F. H. (1996). The ambulatory measurement of posture, thigh acceleration, and muscle tension and their relationship to heart rate.Psychophysiology,33, 409–415.CrossRefPubMedGoogle Scholar
  25. van de Weijer, J. G. W., Smits, M. G., de Haan, A. F., &van Lummel, R. C. (1994). Detecting sleeping postures by accelerometry. The development of a bedrest monitor. In P. H. Veltink & R. C. van Lummel (Eds.),Dynamic analysis using body fixed sensors: Second World Congress of Biomechanics (pp. 23–25). The Hague: McRoberts.Google Scholar
  26. van Someren, E. J., Vonk, B. F., Thijssen, W. A., Speelman, J. D., Schuurman, P. R., Mirmiran, M., &Swaab, D. F. (1998). A new actigraph for long-term registration of the duration and intensity of tremor and movement.IEEE Transactions on Biomedical Engineering,45, 386–395.CrossRefPubMedGoogle Scholar
  27. Veltink, P. H., Bussmann, H. B. J., de Vries, W., Martens, W. L. C., &van Lummel, R. C. (1996). Detection of postures and movements using uni-axial accelerometers.IEEE Rehabilitation Engineering,4, 375–385.CrossRefGoogle Scholar
  28. Veltink, P. H., &van Lummel, R. C. (Eds.) (1994).Dynamic analysis using body fixed sensors: Second World Congress of Biomechanics. The Hague: McRoberts.Google Scholar
  29. Walker, D. J., Heslop, P. S., Plummer, C. J., Essex, T., &Chandler, S. (1997). A continuous patient activity monitor: Validation and relation to disability.Physiological Measurement,18, 49–59.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2000

Authors and Affiliations

  1. 1.Forschungsgruppe PsychophysiologieUniversität FreiburgFreiburgGermany

Personalised recommendations