Skip to main content

The psychobiology of meals

Abstract

Meals are considered as bouts of behavior that, although necessary for supplying nutrients to the body, result in undesirable perturbations of homeostatically controlled parameters. If the environment dictates that an animal mainly eat very large meals, these meal-associated perturbations become potentially dangerous. When the opportunity to eat a very large meal is regular and predictable, animals adopt strategies that maximize the efficiency of the process while minimizing the threatening homeostatic disturbances. Hence, prior to the onset of meals, animals elevate their body temperatures, presumably to facilitate critical processes involved in ingestion and/or digestion. Temperature continues to rise during the meal, and as it approaches potentially dangerous levels, the meal is terminated and temperature falls to “safer” levels. Animals also undergo a slow decline of blood glucose prior to the initiation of meals, thus minimizing the postprandial elevation of blood glucose caused by the absorption of ingested carbohydrates. Analogously, prior to meals, animals undergo a decrease of metabolic rate, thus precluding the necessity for postprandial increases of metabolic rate to reach even higher absolute levels. These premeal changes of regulated parameters have been interpreted by others as indicating depletion of one or more energy supplies so that the animal is compelled to eat. Contrary to this, we interpret the changes as ones that enable the animal to prepare adequately to consume a large meal when the environment is predictable.

References

  1. Armstrong, S. (1980). A chronometric approach to the study of feeding behavior.Neuroscience & Biobehavioral Reviews,4, 27–53.

    Article  Google Scholar 

  2. Aschoff, J. (1987). Effects of periodic availablility of food on circadian rhythms. In T. Hiroshige & K. Honma (Eds.),Comparative aspects of circadian clocks (pp. 19–40). Sapporo: Hokkaido University Press.

    Google Scholar 

  3. Baker, R. A. (1953). Aperiodic feeding behavior in the albino rat.Journal of Comparative & Physiological Psychology,46, 422–426.

    Article  Google Scholar 

  4. Baker, R. A. (1955). The effects of repeated deprivation experience on feeding behavior.Journal of Comparative & Physiological Psychology,48, 37–42.

    Article  Google Scholar 

  5. Bernstein, I. L., Lotter, E. C., Kulkosky, P. J., Porte, D., Jr., &Woods, S. C. (1975). Effect of force-feeding upon basal insulin levels of rats.Proceedings of the Society for Experimental Biology & Medicine,150, 546–548.

    Google Scholar 

  6. Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G., &Jeanrenaud, B. (1981). Cephalic phase reflex insulin secretion.Diabetologia,20, 393–401.

    PubMed  Article  Google Scholar 

  7. Bolles, R. C. (1961). The interaction of hunger and thirst in the rat.Journal of Comparative & Physiological Psychology,54, 580–584.

    Article  Google Scholar 

  8. Bolles, R. C., &Duncan, P. M. (1969). Daily course of activity and subcutaneous body temperature in hungry and thirsty rats.Physiology & Behavior,4, 87–89.

    Article  Google Scholar 

  9. Booth, D. A. (1990). The behavioral and neural sciences of ingestion. In E. M. Stricker (Ed.),Handbook of behavioral neurobiology: Vol. 10. Neurobiology of food and fluid intake (pp. 465–488). New York: Plenum.

    Google Scholar 

  10. Boulos, Z., Rosenwasser, A. M., &Terman, M. (1980). Feeding schedule and the circadian organization of behavior in the rat.Behavioural Brain Research,1, 39–65.

    PubMed  Article  Google Scholar 

  11. Bousfield, W. A. (1935). Quantitative indices of the effects of fasting on eating behavior.Journal of Genetic Psychology,46, 476–479.

    Google Scholar 

  12. Bousfield, W. A., &Elliott, M. H. (1934). The effect of fasting on the eating behavior of rats.Journal of Genetic Psychology,45, 227–237.

    Google Scholar 

  13. Brauer, R. W., Balam, R. W., Bond, H. E., Carroll, H. W., Grisham, J. W., &Pressoti, R. L. (1963). Reversible and irreversible changes in liver at temperatures approaching critical upper level.Federation Proceedings,22, 724–728.

    PubMed  Google Scholar 

  14. Brauer, R. W., Leong, G. F., &Rosenwasser, R. J. (1954). Effect of perfusion pressure and temperature on bile flow and bile secretion pressure.American Journal of Physiology,177, 103–112.

    PubMed  Google Scholar 

  15. Bray, G. A. (1976).The obese patient. Philadelphia: Saunders.

    Google Scholar 

  16. Brobeck, J. R. (1948). Food intake as a mechanism of temperature regulation.Yale Journal of Biology & Medicine,20, 545–552.

    Google Scholar 

  17. Buwalda, B., Strubbe, J. H., Hoes, M. W. N., &Bohus, B. (1991). Reduced preabsorptive insulin response in aged rats: Differential effects of amphetamine and arginine-vasopressin.Journal of the Autonomic Nervous System,36, 123–128.

    PubMed  Article  Google Scholar 

  18. Calvin, A. D., &Behan, R. A. (1954). The effect of hunger upon drinking patterns in the rat.British Journal of Psychology,45, 294–298.

    PubMed  Google Scholar 

  19. Campfield, L. A., &Smith, F. J. (1986a). Blood glucose and meal initiation: A role for insulin?Society for Neuroscience Abstracts,12, 109.

    Google Scholar 

  20. Campfield, L. A., &Smith, F. J. (1986b). Functional coupling between transient declines in blood glucose and feeding behavior: Temporal relationships.Brain Research Bulletin,17, 427–433.

    PubMed  Article  Google Scholar 

  21. Campfield, L. A., &Smith, F. J. (1990a). Systemic factors in the control of food intake: Evidence for patterns as signals. In E. M. Stricker (Ed.),Handbook of behavioral neurobiology: Vol. 10. Neurobiology of food and fluid intake (pp. 183–206). New York: Plenum.

    Google Scholar 

  22. Campfield, L. A., &Smith, F. J. (1990b). Transient declines in blood glucose signal meal initiation.International Journal of Obesity,14(Suppl. 3), 15–33.

    PubMed  Google Scholar 

  23. Cohn, C., Joseph, D., Bell, L., & Allweiss, M. D. (1965). Studies on the effects of feeding frequency and diet composition on fat deposition.Annals of the New York Academy of Sciences,131, 507–518.

    PubMed  Article  Google Scholar 

  24. Coleman, G. J., Harper, S., Clarke, J. D., &Armstrong, S. (1982). Evidence for a separate meal-associated oscillator in the rat.Physiology & Behavior,29, 107–115.

    Article  Google Scholar 

  25. Collier, G. (1986). The dialogue between the house economist and the resident physiologist.Nutrition & Behavior,3, 9–26.

    Google Scholar 

  26. Collier, G., &Johnson, D. F. (1990). The time window of feeding.Physiology & Behavior,48, 771–777.

    Article  Google Scholar 

  27. Collier, G. H., Johnson, D. F., Hill, W. L., &Kaufman, L. W. (1986). The economics of the law of effect.Journal of the Experimental Analysis of Behavior,48, 113–136.

    Article  Google Scholar 

  28. Davies, R. F. (1977). Long and short-term regulation of feeding patterns in the rat.Journal of Comparative & Physiological Psychology,91, 574–585.

    Article  Google Scholar 

  29. Deutsch, J. A., Young, W. G., &Kalogeris, T. J. (1978). The stomach signals satiety.Science,201, 165–167.

    PubMed  Article  Google Scholar 

  30. de Vries, J., Strubbe, J. H., Wildering, W. C., Gorter, J. A., &Prins, A. J. A. (1993). Patterns of body temperature during feeding in rats under varying ambient temperatures.Physiology & Behavior,53, 229–235.

    Article  Google Scholar 

  31. Eikelboom, R., &Stewart, J. (1982). Conditioning of drug-induced physiological responses.Psychological Review,89, 507–528.

    PubMed  Article  Google Scholar 

  32. Even, P., &Nicolaidis, S. (1985). Spontaneous and 2DG-induced metabolic changes and feeding: The ischymetric hypothesis.Brain Research Bulletin,15, 429–435.

    PubMed  Article  Google Scholar 

  33. Friedman, M. I. (1991). Metabolic control of calorie intake. In M. I. Friedman, M. G. Tordoff, & M. R. Kare (Eds.),Chemical senses: Vol. 4. Appetite and nutrition (pp. 19–38). New York: Marcel Dekker.

    Google Scholar 

  34. Friedman, M. I., Tordoff, M. G., &Ramirez, I. (1986). Integrated metabolic control of food intake.Brain Research Bulletin,17, 855–859.

    PubMed  Article  Google Scholar 

  35. Fritschy, W. M., Van Straaten, J. F. M., De Vos, P., Strubbe, J. H., Wolters, G. J. H., &Van Schilfgaarde, R. (1991). The efficacy of intraperitoneal pancreatic islet isografts in the reversal of diabetes in rats.Transplantation,52, 777–783.

    PubMed  Article  Google Scholar 

  36. Geliebter, A., Melton, P. M., McCray, R. S., Gallagher, D. R., Gage, D., &Hashim, S. A. (1992). Gastric capacity, gastric emptying, and test-meal intake in normal and bulimic women.American Journal of Clinical Nutrition,56, 656–661.

    PubMed  Google Scholar 

  37. Ghent, L. (1951). The relation of experience to the development of hunger.Canadian Journal of Psychology,5, 77–81.

    PubMed  Google Scholar 

  38. Gibbs, J., &Smith, G. P. (1991). Cholecystokinin and satiety: Problems in brain-gut interactions. In Y. Taché & D. Wingate (Eds.),Brain-gut interactions (pp. 255–262). Boca Raton, FL: CRC.

    Google Scholar 

  39. Gordon, C.J. (1990). Thermal biology in the rat.Physiology & Behavior,47, 963–991.

    Article  Google Scholar 

  40. Gordon, C. J. (1993). Twenty-four-hour rhythms of selected ambient temperatures in rat and hamster.Physiology & Behavior,53, 257–263.

    Article  Google Scholar 

  41. Grossman, S. P. (1986). The role of glucose, insulin and glucagon in the regulation of food intake and body weight.Neuroscience & Bio-behavioral Reviews,10, 295–315.

    Article  Google Scholar 

  42. Holeckova, E., &Fabry, P. (1959). Hyperphagia and gastric hypertrophy in rats adapted to intermittent starvation.British Journal of Nutrition,13, 261–267.

    Article  Google Scholar 

  43. Inoue, S., Bray, G. A., &Mullen, Y. S. (1978). Transplantation of pancreatic B-cells prevents development of hypothalamic obesity in rats.American Journal of Physiology,235, E266-E271.

    PubMed  Google Scholar 

  44. Jhanwar-Uniyal, M., Beck, B., Burlet, C., &Leibowitz, S. F. (1990). Diurnal rhythm of neuropeptide Y-like immunoactivity in the suprachiasmatic, arcuate and paraventricular nuclei and other hypothalamic sites.Brain Research,536, 331–334.

    PubMed  Article  Google Scholar 

  45. Kersten, A., Strubbe, J. H., &Spiteri, N. J. (1980). Meal patterning of rats with changes in day length and food availability.Physiology & Behavior,25, 953–958.

    Article  Google Scholar 

  46. Kissileff, H. R. (1970). Free-feeding in normal and “recovered lateral” rats monitored by a pellet-detecting eatometer.Physiology & Behavior,5, 163–174.

    Article  Google Scholar 

  47. Krieger, D. T., Hauser, H., &Krey, L. C. (1977). Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity.Science,197, 398–399.

    PubMed  Article  Google Scholar 

  48. Langhans, W., &Scharrer, E. (1987). Evidence for a vagally mediated satiety signal derived from hepatic fatty acid oxidation.Journal of the Autonomic Nervous System,18, 13–18.

    PubMed  Article  Google Scholar 

  49. Lawrence, D. H., &Mason, W. A. (1955). Food intake in the rat as a function of deprivation intervals and feeding rhythms.Journal of Comparative & Physiological Psychology,48, 267–271.

    Article  Google Scholar 

  50. Le, A. D., Poulos, C. X., & Cappell, H. (1979). Conditioned tolerance to the hypothermic effect of ethyl alcohol.Science,206, 1109–1110.

    PubMed  Article  Google Scholar 

  51. Leibowitz, S. F. (1988). Brain neurotransmitters and appetite: Implications for eating disorders. In B. Walsh (Ed.),Eating behavior in eating disorders (pp. 21–35). Washington, DC: American Psychiatric Press.

    Google Scholar 

  52. Leibowitz, S. F. (1990). Hypothalamic neuropeptide Y, galanin, and amines: Concepts of coexistence in relation to feeding behavior.Annals of the New York Academy of Sciences,611, 221–235.

    Article  Google Scholar 

  53. Leibowitz, S. F. (1992). Neuropeptide Y and galanin in the central control of food intake. In G. A. Bray & D. H. Ryan (Eds.),The science of food regulation: Food intake, taste, nutrition and energy expenditure (pp. 235–256). Baton Rouge: Lousiana State University Press.

    Google Scholar 

  54. le Magnen, J. (1981). The metabolic basis of dual periodicity of feeding in rats.Behavioral & Brain Sciences,4, 561–607.

    Article  Google Scholar 

  55. le Magnen, J., &Tallon, S. (1966). La périodicité spontanée de la prise d’alimentsad libitum du rat blanc.Journal de Physiologie,58, 323–349.

    PubMed  Google Scholar 

  56. Leveille, G. A., &O’Hea, E. K. (1967). Influence of periodicity of eating on energy metabolism in the rat.Journal of Nutrition,93, 541–545.

    PubMed  Google Scholar 

  57. Levine, S. (1957). Infantile experience and consummatory behavior in adulthood.Journal of Comparative & Physiological Psychology,50, 609–612.

    Article  Google Scholar 

  58. Levitsky, D. A. (1970). Feeding patterns of rats in response to fasts and changes in environmental conditions.Physiology & Behavior,5, 291–300.

    Article  Google Scholar 

  59. Levitsky, D. A., Faust, I., &Glassman, M. (1976). The ingestion of food and the recovery of body weight following fasting in the naive rat.Physiology & Behavior,17, 575–580.

    Article  Google Scholar 

  60. Lotter, E. C., &Woods, S. C. (1977). Injections of insulin and changes of body weight.Physiology & Behavior,18, 293–297.

    Article  Google Scholar 

  61. Louis-Sylvestre, J. (1978). Feeding and metabolic patterns in rats with truncular vagotomy or with transplanted B-cells.American Journal of Physiology,235, E119-E125.

    PubMed  Google Scholar 

  62. Louis-Sylvestre, J., &le Magnen, J. (1980). A fall in blood glucose level precedes meal onset in free-feeding rats.Neuroscience & Biobehavioral Reviews,4, 13–15.

    Article  Google Scholar 

  63. MacKay, E. M., Callaway, J. W., &Barnes, R. F. (1940). Hyperalimentation in normal animals produced by protamine insulin.Journal of Nutrition,20, 59–66.

    Google Scholar 

  64. Mandler, J. M. (1958). Effect of early food deprivation on adult behavior in the rat.Journal of Comparative & Physiological Psychology,51, 513–517.

    Article  Google Scholar 

  65. Mansfield, J. G., &Cunningham, C. L. (1980). Conditioning and extinction of tolerance to the hypothermic effect of ethanol in rats.Journal of Comparative & Physiological Psychology,94, 962–969.

    Article  Google Scholar 

  66. Marx, M. H. (1952). Infantile deprivation and adult behavior in the rat: Retention of increased rate of eating.Journal of Comparative & Physiological Psychology,45, 43–49.

    Article  Google Scholar 

  67. Mayer, J. (1953). Glucostatic mechanisms of regulation of food intake.New England Journal of Medicine,249, 13–16.

    PubMed  Article  Google Scholar 

  68. Mayer, J. (1955). Regulation of energy intake and the body weight, the glucostatic theory and the lipostatic hypothesis.Annals of the New York Academy of Sciences,63, 15–43.

    PubMed  Article  Google Scholar 

  69. Moll, R. P. (1964). Drive and maturation effects in the development of consummatory behavior.Psychological Reports,15, 295–302.

    Google Scholar 

  70. Moran, T. H., &McHugh, P. R. (1982). Cholecystokinin suppresses food intake by inhibiting gastric emptying.American Journal of Physiology,242, R491-R497.

    PubMed  Google Scholar 

  71. Morley, J. E., Bartness, T. J., Gosnell, B. A., &Levine, A. S. (1985). Peptidergic regulation of feeding.International Review of Neurobiology,27, 207–299.

    PubMed  Article  Google Scholar 

  72. Nicolaidis, S., &Even, P. (1984). Mesure du métabolisme de fond en relation avec la prise alimentaire: Hypothese iscymétrique.Comptes Rendus Academie de Sciences, Paris,298, 295–300.

    Google Scholar 

  73. Pavlov, I. P. (1927).Conditioned reflexes. London: Oxford University Press.

    Google Scholar 

  74. Poulos, C. X., &Cappell, H. (1991). Homeostatic theory of drug tolerance: A general model of physiological adaptation.Psychological Review,98, 390–408.

    PubMed  Article  Google Scholar 

  75. Powley, T. L. (1977). The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis.Psychological Review,84, 89–126.

    PubMed  Article  Google Scholar 

  76. Ritter, S., &Taylor, J. S. (1989). Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats.American Journal of Physiology,256, R1232-R1239.

    PubMed  Google Scholar 

  77. Roozendaal, B., Oldenburger, W. P., Strubbe, J. H., Koolhaas, J. M., &.Bohus, B. (1990). The central amygdala is involved in the conditioned but not the meal-induced cephalic insulin response in the rat.Neuroscience Letters,116, 210–215.

    PubMed  Article  Google Scholar 

  78. Saito, M., Kato, H., &Suda, M. (1980). Orcadian rhythm of intestinal disaccharidase of rats fed with adiurnal periodicity.American Journal of Physiology,238, G97-G101.

    PubMed  Google Scholar 

  79. Saito, M., Murakami, E., &Suda, M. (1976). Circadian rhythms in disaccharidases of rat small intestine and its relation to food intake.Biochimica & Biophysica Acta,421, 177–179.

    Google Scholar 

  80. Schwartz, M. W., Figlewicz, D. P., Baskin, D. G., Woods, S. C., &Porte, D., Jr. (1992). Insulin in the brain: A hormonal regulator of energy balance.Endocrine Reviews,13, 387–414.

    PubMed  Google Scholar 

  81. Schwartz, M. W., Figlewicz, D. P., Woods, S. C., Porte, D., Jr., &Baskin, D. G. (1993). Insulin, neuropeptide Y, and food intake.Annals of the New York Academy of Sciences,692, 60–71.

    PubMed  Article  Google Scholar 

  82. Sclafani, A. (1972). The effects of food deprivation and palatability on the latency to eat of normal and hyperphagic rats.Physiology & Behavior,8, 977–979.

    Article  Google Scholar 

  83. Sclafani, A. (1978). Food motivation in hypothalamic hyperphagic rats reexamined.Neurosciences & Biobehavioral Reviews,2, 339–355.

    Article  Google Scholar 

  84. Sclafani, A. (1991). Conditioned food preferences.Bulletin of the Psychonomic Society,29, 256–260.

    Google Scholar 

  85. Shor-Posner, G., Ian, C., Brennan, G., Cohn, T., Moy, H., Ning, A., &Leibowitz, S. F. (1991). Self-selecting albino rats exhibit differential preferences for pure macronutrient diets: Characterization of three subpopulations.Physiology & Behavior,50, 1187–1195.

    Article  Google Scholar 

  86. Siegel, S. (1975). Evidence from rats that morphine tolerance is a learned response.Journal of Comparative & Physiological Psychology,89, 498–506.

    Article  Google Scholar 

  87. Skibba, J. L., &Coluns, F. G. (1978). Effect of temperature on biochemical functions in the isolated perfused rat liver.Journal of Surgical Research,24, 435–441.

    PubMed  Article  Google Scholar 

  88. Skinner, B. F. (1938).The behavior of organisms. New York: Appleton-Century-Crofts.

    Google Scholar 

  89. Smith, F. J., &Campfield, L. A. (1993). Meal initiation occurs after experimental induction of transient declines in blood glucose.American Journal of Physiology,265, R1423-R1429.

    PubMed  Google Scholar 

  90. Smith, G. P., &Epstein, A. N. (1969). Increased feeding in response to decreased glucose utilization in the rat and monkey.American Journal of Physiology,217, 1083–1087.

    PubMed  Google Scholar 

  91. Smith, G. P., &Gibbs, J. (1992). The development and proof of the CCK hypothesis of satiety. In C. T. Dourish, S. J. Cooper, S. D. Iversen, & L. L. Iversen (Eds.),Multiple cholecystokinin receptors in the CNS (pp. 166–182). Oxford: Oxford University Press.

    Google Scholar 

  92. Snowden, C. T., &Epstein, A. N. (1970). Oral and intragastric feeding in vagotomized rats.Journal of Comparative & Physiological Psychology,71, 59–67.

    Article  Google Scholar 

  93. Stallone, D. D., &Stunkard, A. J. (1991). The regulation of body weight: Evidence and clinical implications.Annals of Behavioral Medicine,13, 220–230.

    Google Scholar 

  94. Steffens, A. B. (1976). Influence of the oral cavity on insulin release in the rat.American Journal of Physiology,230, 1411–1415.

    PubMed  Google Scholar 

  95. Stephan, F. K. (1984). Phase shifts of circadian rhythms in activity entrained to food access.Physiology & Behavior,32, 663–671.

    Article  Google Scholar 

  96. Stephan, F. K. (1992). Resetting of a circadian clock by food pulses.Physiology & Behavior,52, 997–1008.

    Article  Google Scholar 

  97. Stevenson, N. R., &Fierstein, J. S. (1976). Circadian rhythms of intestinal sucrase and glucose transport: Cued by the time of feeding.American Journal of Physiology,230, 731–735.

    PubMed  Google Scholar 

  98. Strominger, J. L., &Brobeck, J. R. (1953). A mechanism of regulation of food intake.Yale Journal of Biology & Medicine,25, 383–390.

    Google Scholar 

  99. Strubbe, J. H. (1992). Parasympathetic involvement in rapid meal-associated conditioned insulin secretion in the rat.American Journal of Physiology,263, R615-R618.

    PubMed  Google Scholar 

  100. Strubbe, J. H., &Bouman, P. R. (1978). Plasma insulin patterns in the unanesthetized rat during intracardial infusion and spontaneous ingestion of graded loads of glucose.Metabolism,27, 341–351.

    PubMed  Article  Google Scholar 

  101. Strubbe, J. H., Dijkstra, T., Keyser, J., &Prins, A. J. A. (1986). Interaction between circadian and caloric control of food intake.Physiology & Behavior,36, 489–493.

    Article  Google Scholar 

  102. Strubbe, J. H., &Gorissen, J. (1980). Meal patterning in the lactating rat.Physiology & Behavior,25, 775–777.

    Article  Google Scholar 

  103. Strubbe, J. H., Prins, A. J. A., Bruggink, J., &Steffens, A. B. (1987). Daily variation of food induced changes in blood glucose and insulin in the rat and the control by the suprachiasmatic nucleus and the vagus nerve.Journal of the Autonomic Nervous System,20, 113–119.

    PubMed  Article  Google Scholar 

  104. Strubbe, J. H., &Steffens, A. B. (1975). Rapid insulin release after ingestion of a meal in the unanesthetized rat.American Journal of Physiology,229, 1019–1022.

    PubMed  Google Scholar 

  105. Strubbe, J. H., &Steffens, A. B. (1993). Neural control of insulin secretion.Hormones & Metabolic Research,25, 507–512.

    Article  Google Scholar 

  106. Strubbe, J. H., &van Wachem, P. (1981). Insulin secretion by the transplanted neonatal pancreas during food intake in fasted and lean rats.Diabetologia,20, 228–236.

    PubMed  Article  Google Scholar 

  107. Teff, K. L., Mattes, R. D., &Engelman, K. (1991). Cephalic phase insulin release in normal weight males: Verification and reliability.American Journal of Physiology,261, E430-E436.

    PubMed  Google Scholar 

  108. Tempel, D. L., &Leibowitz, S. F. (1990). Diurnal variations in the feeding responses to norepinephrine, neuropeptide Y and galanin in the paraventricular nucleus.Brain Research Bulletin,25, 821–825.

    PubMed  Article  Google Scholar 

  109. Tempel, D. L., Shor-Posner, G., Dwyer, D., &Leibowitz, S. F. (1989). Nocturnal patterns of macronutrient intake in freely feeding and food-deprived rats.American Journal of Physiology,256, R54-R58.

    Google Scholar 

  110. Terman, M., Gibbon, J., Fairhurst, S., &Waring, A. (1984). Daily meal anticipation: Interaction of the circadian and interval timing.Annals of the New York Academy of Sciences,423, 470–487.

    PubMed  Article  Google Scholar 

  111. Weingarten, H. P. (1992, June).Learned meal anticipation: Physiological mediators and behavioral properties. Plenary lecture at the meeting of the Society for the Study of Ingestive Behavior, Princeton.

  112. West, D. B., Fey, D., &Woods, S. C. (1984). Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats.American Journal of Physiology,246, R776-R787.

    PubMed  Google Scholar 

  113. Woods, S. C. (1976). Conditioned hypoglycemia.Journal of Comparative & Physiological Psychology,90, 1164–1168.

    Article  Google Scholar 

  114. Woods, S. C. (1991). The eating paradox: How we tolerate food.Psychological Review,98, 488–505.

    PubMed  Article  Google Scholar 

  115. Woods, S. C., Decke, E., &Vasselli, J. R. (1974). Metabolic hormones and regulation of body weight.Psychological Review,81, 26–43.

    PubMed  Article  Google Scholar 

  116. Woods, S. C., &Gibbs, J. (1989). The regulation of food intake by peptides.Annals of the New York Academy of Sciences,575, 236–243.

    PubMed  Article  Google Scholar 

  117. Woods, S. C., &Kulkosky, P. J. (1976). Classically conditioned changes of blood glucose level.Psychosomatic Medicine,38, 201–219.

    PubMed  Google Scholar 

  118. Woods, S. C., Lattemann, D. P., Schwartz, M. W., &Porte, D., Jr. (1990). A re-assessment of the regulation of adiposity and appetite by the brain insulin system.International Journal of Obesity,14, 69–76.

    PubMed  Google Scholar 

  119. Woods, S. C., &Porte, D., Jr. (1974). Autonomic control of the endocrine pancreas.Physiological Reviews,54, 596–619.

    PubMed  Google Scholar 

  120. Woods, S. C., Vasselli, J. R., Kaestner, E., Szakmary, G. A., Milburn, P., &Vitiello, M. V. (1977). Conditioned insulin secretion and meal-feeding in rats.Journal of Comparative & Physiological Psychology,91, 128–133.

    Article  Google Scholar 

  121. Zucker, I. (1971). Light-dark rhythms in rat eating and drinking behavior.Physiology & Behavior,6, 115–126.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Woods.

Additional information

This project was supported in part by NIH Grant DK 17844 to S.C.W. and by the Netherlands Organization of Science (NWO). Although many colleagues contributed to the discussion, we would particularly like to thank L. Arthur Campfield, Francoise J. Smith, Ilene L. Bernstein, Robert C. Bolles, Anthony Sclafani, Anton J. W. Scheurink, Jan de Vries, James C. Smith, Daniel Porte, and Douglas S. Ramsay.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woods, S.C., Strubbe, J.H. The psychobiology of meals. Psychonomic Bulletin & Review 1, 141–155 (1994). https://doi.org/10.3758/BF03200770

Download citation

Keywords

  • Blood Glucose
  • Meal Size
  • Anticipatory Response
  • Large Meal
  • Small Meal