Advertisement

Simulation-based bayesian inference using BUGS

  • Ching-fan SheuEmail author
  • Suzanne L. O’Curry
Statistics: Research And Teaching
  • 402 Downloads

Abstract

We illustrate the application of BUGS, a Bayesian computer program, with two examples. The algorithm used in the program is a popular Markov chain Monte Carlo procedure called Gibbs sampling. Bayesian analysis based on simulation has been applied to a wide range of complex problems (Gilks, Richardson, & Spiegelhalter, 1996). The availability of a general purpose program like BUGS should facilitate important applications of Bayesian inference in psychological research.

Keywords

Bayesian Inference Gibbs Sampling Markov Chain Monte Carlo Method Bayesian Computation Markov Chain Monte Carlo Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albert, J. H. (1996).Bayesian computation using MINITAB. Belmont, CA: Duxbury.Google Scholar
  2. Box, G. E. P., &Tiao, C. C. (1973).Bayesian inference in statistical models. Reading, MA: Addison-Wesley.Google Scholar
  3. Casella, G., &George, E. (1992). Understanding the Gibbs sampler.American Statistician,46, 167–174.CrossRefGoogle Scholar
  4. Chambers, J. M., &Hasties, T. J. (Eds.) (1992).Statistical models in S. New York: Chapman & Hall.Google Scholar
  5. Cowles, M. K., &Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: A comparative review.Journal of American Statistical Association,91, 883–905.CrossRefGoogle Scholar
  6. Edwards, W., Lindman, H., &Savage, L. J. (1963). Bayesian statistical inference in psychological research.Psychological Review,70, 193–242.CrossRefGoogle Scholar
  7. Gelfand, A. E., &Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities.Journal of the American Statistical Association,85, 398–409.CrossRefGoogle Scholar
  8. Geman, S., &Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images.IEEE Transactions on Pattern Analysis & Machine Intelligence,6, 721–741.CrossRefGoogle Scholar
  9. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In J. M. Bernado, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.),Bayesian statistics 4 (pp. 169–193). Oxford: Oxford University Press, Clarendon Press.Google Scholar
  10. Gilks, W. R., Richardson, S., &Spiegelhalter, D. J. (Eds.) (1996).Practical Markov chain Monte Carlo. New York: Chapman & Hall.Google Scholar
  11. Neter, J., Kutner, M. H., Nachtsheim, C. J., &Wasserman, W. (1996).Applied linear statistical models (4th ed.). Chicago: Irwin.Google Scholar
  12. Press, S. J. (1989).Bayesian statistics. New York: Wiley.Google Scholar
  13. Spiegelhalter, D. J., Thomas, A., Best, N. G., &Gilks, W. (1997).BUGS: Bayesian inference using Gibbs sampling, Version 0.60. Cambridge: Medical Research Council Biostatistic Unit.Google Scholar
  14. Tanner, M. A. (1993).Tools for statistical inference (3rd ed.). New York: Springer-Verlag.Google Scholar

Copyright information

© Psychonomic Society, Inc. 1998

Authors and Affiliations

  1. 1.Department of PsychologyDePaul UniversityChicago

Personalised recommendations