Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Animal Learning & Behavior
  3. Article

The evolution of learned and innate behavior: Contributions from genetics and neurobiology to a theory of behavioral evolution

  • Published: December 1986
  • Volume 14, pages 339–348, (1986)
  • Cite this article
Download PDF
Animal Learning & Behavior Aims and scope Submit manuscript
The evolution of learned and innate behavior: Contributions from genetics and neurobiology to a theory of behavioral evolution
Download PDF
  • Ann Jane Tierney1 nAff2 
  • 18k Accesses

  • 17 Altmetric

  • 1 Mention

  • Explore all metrics

Abstract

In recent years, ethologists and psychologists have become increasingly interested in the evolution of the ability to learn and in the relationship between innate and learned behavior. However, recent discussions of behavioral evolution have not adequately incorporated contemporary knowledge of nervous system development and structure. Most discussions are based on the following assumptions: (1) That innate behaviors are programmed by specific genes; (2) that learning requires a larger, more flexible nervous system than does innate behavior; and (3) that the ability to learn is phylogenetically more recent than innate behavior. This paper reviews information about nervous system development and the neurobiology of plasticity and learning that questions the validity of these assumptions. It is hypothesized that behavioral flexibility is phylogenetically primitive and that learned behavioral adaptations may commonly precede innate forms of the same behaviors. The role of genetic assimilation in behavioral evolution is discussed.

Article PDF

Download to read the full article text

Similar content being viewed by others

Open questions: Tackling Darwin’s “instincts”: the genetic basis of behavioral evolution

Article Open access 03 April 2017

Origin and Evolution of Nervous Systems

Chapter © 2019

Resynthesizing behavior through phylogenetic refinement

Article Open access 03 June 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Alcock, J. (1979).Animal behavior: An evolutionary approach. Sunderland, MA: Sinauer.

    Google Scholar 

  • Alkon, D. L. (1980). Cellular analysis of a gastropod (Hermissenda crassicomis) model of associative learning.Biological Bulletin,159, 505–560.

    Article  Google Scholar 

  • Alkon, D. L. (1984). Changes in membrane currents during learning.Journal of Experimental Biology,112, 95–112.

    PubMed  Google Scholar 

  • Baldwin, J. M. (1896). A new factor in evolution.American Naturalist,30, 441–451.

    Article  Google Scholar 

  • Barash, D. P. (1977).Sociobiology and behavior. New York: Elsevier.

    Google Scholar 

  • Bateson, P. O. G. (1971). Imprinting. In H. Moltz (Ed.),The ontogeny of vertebrate behavior (pp. 369–387). New York: Academic Press.

    Google Scholar 

  • Bateson, P. P. G. (1984). Genes, evolution and learning. In P. Marler & H. S. Terrace (Eds.),Dahlem workshop on the biology of learning (pp. 75–88). New York: Springer.

    Google Scholar 

  • Catchpole, C. K. (1982). The evolution of bird sounds in relation to mating and spacing behavior. In D. E. Kroodsma & E. H. Miller (Eds.),Acoustic communication in birds (Vol. 1, pp. 297–319). New York: Academic Press.

    Google Scholar 

  • Changeux, J. P., &Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks.Nature,264, 705–712.

    Article  PubMed  Google Scholar 

  • Cotman, C. W., &Nieto-Sampedro, M. (1982). Brain function, synapse renewal, and plasticity.Annual Review of Psychology,33, 371–401.

    Article  PubMed  Google Scholar 

  • Cotman, C. W., &Nieto-Sampedro, M. (1984). Cell biology of synaptic plasticity.Science,225, 1287–1294.

    Article  PubMed  Google Scholar 

  • Cotman, C. W., Nieto-Sampedro, M., &Harris, E. W. (1981). Synapse replacement in the nervous system of adult vertebrates.Physiological Review,61, 684–784.

    Google Scholar 

  • Couvillon, P. A., &Bitterman, M. E. (1980). Some phenomena of associative learning in honeybees.Journal of Comparative & Physiological Psychology,94, 878–885.

    Article  Google Scholar 

  • Cowan, W. M. (1973). Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In M. Rockstein (Ed.),Development and aging in the nervous system (pp. 19–41). New York: Academic Press.

    Google Scholar 

  • Cowan, W. M. (1979). Selection and control in neurogenesis. In F. O. Schmitt & F. C. Worden (Eds.),Neurosciences fourth study program (pp. 59–79). Cambridge: MIT Press.

    Google Scholar 

  • Dittos, W. P. J., &Lemon, R. E. (1969). Effects of song tutoring and acoustic isolation on the song repertoires of cardinals.Animal Behaviour,17, 523–533.

    Article  Google Scholar 

  • Ehrman, L., &Parsons, P. A. (1981).Behavior genetics and evolution. New York: McGraw-Hill.

    Google Scholar 

  • Garcia, J., &Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning.Psychonomic Science,4, 123–124.

    Google Scholar 

  • Goodman, C. S. (1979). Isogenic grasshoppers. Genetic variability and development of identified neurons. In X. Breakefield (Ed.),Neurogenetics: Genetic approaches to the nervous system (pp. 101–151). New York: Elsevier.

    Google Scholar 

  • Gould, J. L. (1982).Ethology: The mechanics and evolution of behavior. New York: W. W. Norton.

    Google Scholar 

  • Gould, J. L., &Marler, P. (1984). Ethology and the natural history of learning. In P. Marler & H. S. Terrace (Eds.),Dahlem workshop on the biology of learning (pp. 47–74). New York-Springer.

    Google Scholar 

  • Greenough, W. T. (1984). Structural correlates of information storage in the mammalian brain: A review and hypothesis.Trends in Neuroscience,73, 229–233.

    Article  Google Scholar 

  • Guillery, R. W. (1974). Visual pathways in albinos.Scientific American,230, 44–54.

    Article  PubMed  Google Scholar 

  • Hailman, J. P. (1967). The ontogeny of an instinct.Behaviour Supplements,15, 1–159.

    Google Scholar 

  • Hailman, J. P. (1969). How an instinct is learned.Scientific American,111, 98–108.

    Article  Google Scholar 

  • Haldane, J. B. S. (1959) Natural selection. In P. R. Bell (Ed.),Darwin’s Biological Work (pp. 101–149). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hall, J. C., &Greenspan, R. J. (1979). Genetic analysis ofDrosophila neurobiology.Annual Review of Genetics,13, 127–195.

    Article  PubMed  Google Scholar 

  • Hamburger, V., &Oppenheim, R. W. (1982). Naturally occurring neuronal death in vertebrates.Neuroscience Commentary,1, 39–55.

    Google Scholar 

  • Harris, W. A. (1981). Neural activity and development.Annual Review of Physiology,43, 689–710.

    Article  PubMed  Google Scholar 

  • Hawkins, R. D., Abrams, T. W., Carew, T. J., &Kandel, E. R. (1983). A cellular mechanism of classical conditioning inAplysia. Activity-dependent amplification of presynaptic facilitation.Science,219, 400–405.

    Article  PubMed  Google Scholar 

  • Hinde, R. A. (1970).Animal behaviour. New York: McGraw-Hill.

    Google Scholar 

  • Hollyday, M., &Hamburger, V. (1976). Reduction of the naturally occurring motor neuron loss by enlargement of the periphery.Journal of Comparative Neurology,170, 311–320.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., &Wiesel, T. N. (1971). Aberrant visual projections in the Siamese cat.Journal of Physiology,218, 33–62.

    PubMed  Google Scholar 

  • Jacobson, M. (1978).Developmental neurobiology. New York: Plenum Press.

    Google Scholar 

  • Johnston, T. D. (1981). Contrasting approaches to a theory of learning.Behavioral & Brain Sciences,4, 125–173.

    Article  Google Scholar 

  • Johnston, T. D. (1982). Selective costs and benefits in the evolution of learning.Advances in the Study of Behavior,12, 65–106.

    Article  Google Scholar 

  • Kandel, E. R. (1981). Synaptic transmission II: Presynaptic factors controlling transmitter release. In E. R. Kandel & J. H. Schwartz (Eds.),Principles of neural science. New York: Elsevier.

    Google Scholar 

  • Kandel, E. R., &Schwartz, J. H. (1982). Molecular biology of learning: Modulation of transmitter release.Science,218, 433–443.

    Article  PubMed  Google Scholar 

  • King, A. P., &West, M. J. (1977). Species identification in the North American cowbird: Appropriate responses to abnormal song.Science,195, 1002–1004.

    Article  PubMed  Google Scholar 

  • Kroodsma, D. E. (1982). Learning and the ontogeny of sound signals in birds. In D. E. Kroodsma & E. H. Miller (Eds.),Acoustic communication in birds (pp. 1–23). New York: Academic Press.

    Google Scholar 

  • Lanyon, W. E. (1979). Development of song in the wood thrush (Hylocichla mustelina), with notes on a technique for hand-rearing passerine birds from the egg.American Museum Novitates,2666, 1–27.

    Google Scholar 

  • Lehrman, D. S. (1953). A critique of Konrad Lorenz’s theory of instinctive behaviour.Quarterly Review of Biology,28, 337–363.

    Article  PubMed  Google Scholar 

  • Levinthal, F., Macagno, E., &Levinthal, C. (1975). Anatomy and development of identified cells in isogenic organisms.Cold Spring Harbor Symposia on Quantitative Biology,40, 321–331.

    Google Scholar 

  • Lynch, G., &Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis.Science,224, 1057–1063.

    Article  PubMed  Google Scholar 

  • Macagno, E. R., Lopresti, V., &Levinthal, C. (1973). Structure and development of neuronal connections in isogenic organisms: Variation and similarities in the optic system ofDaphnia magna.Proceedings of the National Academy of Sciences of the United States of America,70, 57–61.

    Article  PubMed  Google Scholar 

  • Marler, P. A. (1970). A comparative approach to vocal learning: Song development in the white-crowned sparrow.Journal of Comparative & Physiological Psychology,71, 1–25.

    Article  Google Scholar 

  • Marler, P., &Mundinger, P. (1971). Vocal learning in birds. In H. Moltz (Ed.),The ontogeny of vertebrate behavior (pp. 389–450). New York: Academic Press.

    Google Scholar 

  • Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., &Pitts, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens).Journal of General Physiology,43, 129–175.

    Article  PubMed  Google Scholar 

  • Mayr, E. (1963).Animal species and evolution. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Mayr, E. (1974). Behavior programs and evolutionary strategies.American Scientist,62, 650–659.

    PubMed  Google Scholar 

  • McGuire, T. R., &Hirsch, J. (1977). Behavior-genetic analysis ofPhormia regina: Conditioning, reliable individual differences, and selection.Proceedings of the National Academy of Sciences of the United States of America,74, 5193–5197.

    Article  PubMed  Google Scholar 

  • Morgan, C. L. (1896).Habit and instinct. London: Arnold.

    Google Scholar 

  • Nottebohm, F. (1972). The origins of vocal learning.American Naturalist,106, 116–140.

    Article  Google Scholar 

  • Osborn, H. F. (1896). A mode of evolution requiring neither natural selection nor the inheritance of acquired characters.Transactions of the New York Academy of Sciences,15, 141–142.

    Google Scholar 

  • Palka, J., &Edwards, J. S. (1974). The cerci and abdominal giant fibers of the house cricket,Acheta domesticus. II. Regeneration and effects of chronic deprivation.Proceedings of the Royal Society of London B,185, 105–121.

    Article  Google Scholar 

  • Partridge, L. (1983) Genetics and behaviour. In T. R. Halliday & P. J. B. Slater (Eds.),Genes, development and behavior (pp. 11–51). New York: Freeman.

    Google Scholar 

  • Piaget, J. (1978).Behavior and evolution. New York: Random House.

    Google Scholar 

  • Plotkin, H. C., &Odling-Smee, F. J. (1979). Learning, change and evolution: An enquiry into the teleonomy of learning.Advances in the Study of Behavior,10, 1–41.

    Article  Google Scholar 

  • Roper, T. J. (1983). Learning as a biological phenomenon. In T. R. Halliday & P. J. B. Slater (Eds.),Genes, development and behavior (pp. 178–212). New York Freeman.

    Google Scholar 

  • Rozin, P. (1976). The evolution of intelligence and access to the cognitive unconscious.Progress in Psychobiology & Physiological Psychology,6, 245–280.

    Google Scholar 

  • Rozin, P., & Schull, J. (in press). The adaptive-evolutionary point of view in experimental psychology: A critical analysis of “constraints.” In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.),Handbook of experimental psychology. New York: Wiley.

  • Sahley, C., Rudy, J. W., &Gelperin, A. (1981). An analysis of associative learning in a terrestrial mollusc.Journal of Comparative Physiology,144, 1–8.

    Article  Google Scholar 

  • Shashoua, V. E. (1982). Molecular and cell biological aspects of learning: Towards a theory of memory.Advances in Cellular Neurobiology,3, 97–141.

    Google Scholar 

  • Shashoua, V. E. (1985). The role of extracellular proteins in learning and memory.American Scientist,73, 364–370.

    Google Scholar 

  • Shepherd, G. M. (1983).Neurobiology. Oxford: Oxford University Press.

    Google Scholar 

  • Skrede, K. K., &Malthe-Sorenssen, D. (1981). Increased resting and evoked release of transmitter following repetitive electrical tetanization in hippocampus: A biochemical correlate to long-lasting synaptic potentiation.Brain Research,208, 436–441.

    Article  PubMed  Google Scholar 

  • Slater, P. J. B. (1983). Bird song learning: Theme and variations. In A. H. Brush & G. A. Clark (Eds.),Perspectives in ornithology (pp. 475–511). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Staddon, J. E. R. (1983).Adaptive behavior and learning. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stent, G. (1981). Strength and weakness of the genetic approach to the development of the nervous system. In W. M. Cowan (Ed.),Studies in developmental neurobiology (pp. 288–321). Oxford: Oxford University Press.

    Google Scholar 

  • Swanson, L. W., Teyler, T. J., &Thompson, R. F. (1982). Hippocampal long-term potentiation: Mechanisms and implications for memory.Neurosciences Research Program Bulletin,20, 617–764.

    Google Scholar 

  • Thompson, R. F., Berger, T. W., &Madden, I., IV (1983). Cellular processes of learning and memory in the mammalian CNS.Annual Review of Neuroscience,6, 447–491.

    Article  PubMed  Google Scholar 

  • Tinbergen, N., &Perdeck, A. C. (1950). On the stimulus situations releasing the begging response in the newly hatched herring gull (Larus argentatus Pont.).Behaviour,3, 1–39.

    Article  Google Scholar 

  • Truman, J. W. (1984). Cell death in invertebrate nervous systems.Annual Review of Neuroscience,7, 171–188.

    Article  PubMed  Google Scholar 

  • Tsukahara, N. (1981). Synaptic plasticity in the mammalian central nervous system.Annual Review of Neuroscience,4, 351–379.

    Article  PubMed  Google Scholar 

  • Waddington, C. H. (1953). Genetic assimilation of an acquired characterEvolution,7, 118–126.

    Article  Google Scholar 

  • Waddington, C. H. (1956). Genetic assimilation of the bithorax phenotypeEvolution,10, 1–13.

    Article  Google Scholar 

  • Waddington, C. H. (1961). Genetic assimilation.Advances in Genetics,10, 257–293.

    Article  PubMed  Google Scholar 

  • Ward, S., Thomson, N., White, J. C., &Brenner, S. (1975). Electron microscopical reconstruction of the anterior anatomy of the nematodeCaeanorhabditis elegans Journal of Comparative Neurology,160, 313–338.

    Article  Google Scholar 

  • Williams, G. C. (1966).Adaptation and natural selection Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Author information

Author notes
  1. Ann Jane Tierney

    Present address: Boston University Marine Program, Marine Biological Laboratory, 02543, Woods Hole, MA

Authors and Affiliations

  1. University of Toronto, Toronto, Ontario, Canada

    Ann Jane Tierney

Authors
  1. Ann Jane Tierney
    View author publications

    You can also search for this author in PubMed Google Scholar

Additional information

The author was in the Department of Zoology at the University of Toronto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tierney, A.J. The evolution of learned and innate behavior: Contributions from genetics and neurobiology to a theory of behavioral evolution. Animal Learning & Behavior 14, 339–348 (1986). https://doi.org/10.3758/BF03200077

Download citation

  • Received: 02 June 1986

  • Accepted: 03 September 1986

  • Issue Date: December 1986

  • DOI: https://doi.org/10.3758/BF03200077

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Feature Detector
  • Nervous System Development
  • Behavioral Evolution
  • Innate Behavior
  • Song Learning
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

65.109.116.201

Not affiliated

Springer Nature

© 2025 Springer Nature