Skip to main content

Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations

Abstract

A real-time visual processing theory is used to analyze and explain a wide variety of perceptual grouping and segmentation phenomena, including the grouping of textured images, randomly defined images, and images built up from periodic scenic elements. The theory explains how “local” feature processing and “emergent” features work together to segment a scene, how segmentations may arise across image regions that do not contain any luminance differences, how segmentations may override local image properties in favor of global statistical factors, and why segmentations that powerfully influence object recognition may be barely visible or totally invisible. Network interactions within a Boundary Contour (BC) System, a Feature Contour (FC) System, and an Object Recognition (OR) System are used to explain these phenomena. The BC System is defined by a hierarchy of orientationally tuned interactions, which can be divided into two successive subsystems called the OC filter and the CC loop. The OC filter contains two successive stages of oriented receptive fields which are sensitive to different properties of image contrasts. The OC filter generates inputs to the CC loop, which contains successive stages of spatially short-range competitive interactions and spatially long-range cooperative interactions. Feedback between the competitive and cooperative stages synthesizes a global context-sensitive segmentation from among the many possible groupings of local featural elements. The properties of the BC System provide a unified explanation of several ostensibly different Gestalt rules. The BC System also suggests explanations and predictions concerning the architecture of the striate and prestriate visual cortices. The BC System embodies new ideas concerning the founda-tions of geometry, on-line statistical decision theory, and the resolution of uncertainty in quan-tum measurement systems. Computer simulations establish the formal competence of the BC System as a perceptual grouping system. The properties of the BC System are compared with probabilistic and artificial intelligence models of segmentation. The total network suggests a new approach to the design of computer vision systems, and promises to provide a universal set of rules for perceptual grouping of scenic edges, textures, and smoothly shaded regions.

References

  • Beck, J. (1966a). Effect of orientation and of shape similarity on perceptual grouping.Perception & Psychophysics,1, 300–302.

    Google Scholar 

  • Beck, J. (1966b). Perceptual grouping produced by changes in orientation and shape.Science,154, 538–540.

    PubMed  Article  Google Scholar 

  • Beck, J. (1972). Similarity grouping and peripheral discriminability under uncertainty.American Journal of Psychology,85, 1–19.

    PubMed  Article  Google Scholar 

  • Beck, J. (1982). Textural segmentation. In J. Beck (Ed.),Organization and representation in perception. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Beck, J. (1983). Textural segmentation, second-order statistics, and textural elements.Biological Cybernetics,48, 125–130.

    PubMed  Article  Google Scholar 

  • Beck, J., Prazdny, K., &Rosenfeld, A. (1983). A theory of textural segmentation. In J. Beck, B. Hope, & A. Rosenfeld (Eds.),Human and machine vision. New York: Academic Press.

    Google Scholar 

  • Caelli, T. (1982). On discriminating visual textures and images.Perception & Psychophysics,31, 149–159.

    Google Scholar 

  • Caelli, T. (1983). Energy processing and coding factors in texture discrimination and image processing.Perception & Psychophysics,34, 349–355.

    Google Scholar 

  • Caelu, T., &Dodwell, P. C. (1982). The discrimination of structure in vectorgraphs: Local and global effects.Perception & Psychophysics,32, 314–326.

    Google Scholar 

  • Caelu, T., &Julesz, B. (1979). Psychophysical evidence for global feature processing in visual texture discrimination.Journal of the Optical Society of America,69, 675–677.

    Article  Google Scholar 

  • Carpenter, G. A., &Grossberg, S. (1981). Adaptation and transmitter gating in vertebrate photoreceptors.Journal of Theoretical Neurobiology,1, 1–42.

    Google Scholar 

  • Carpenter, G. A., &Grossberg, S. (1983). Dynamic models of neural systems: Propagated signals, photoreceptor transduction, and circadian rhythms. In J. P E. Hodgson (Ed.),Oscillations in mathematical biology. New York. Springer-Verlag.

    Google Scholar 

  • Carpenter, G. A., &Grossberg, S. (1985). Neural dynamics of category learning and recognition: Attention, memory consolidation, and amnesia. In J. Davis, W Newburgh, & E. Wegman (Eds.),Brain structure, learning, and memory. Washington, DC. AAAS Symposium Series.

    Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (in press). Neural dynamics of category learning and recognition Structural invariants, evoked potentials, and reinforcement. In M. Commons, R. Heimstein, & S. Kosslyn (Eds.),Pattern recognition and concepts in animals, people, and machines. Hillsdale, NJ: Erlbaum.

  • Cohen, M. A., &Grossberg, S. (1984a). Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance.Perception & Psychophysics,36, 428–456.

    Google Scholar 

  • Cohen, M. A., &Grossberg, S. (1984b). Some global properties of binocular resonances Disparity matching, filling-in, and figure-ground synthesis In P. Dodwell & T Caelli (Eds ),Figurai synthesis. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Desimone, R., Schein, S. J., Moran, J., &Ungerleider, L G (1985) Contour, color, and shape analysis beyond the striate cortexVision Research,25, 441–452.

    PubMed  Article  Google Scholar 

  • Dev, P. (1975). Perception of depth surfaces in random-dot stereograms A neural model International.Journal of Man-Machine Studies,7, 511–528.

    Article  Google Scholar 

  • Devalois, R. L., Albrecht, D. G., &Thorell, L. G (1982) Spatial frequency selectivity of cells in macaque visual cortex.Vision Research,22, 545–559.

    Article  Google Scholar 

  • Dodwell, P C. (1983). The Lie transformation group model of visual perception.Perception & Psychophysics,34, 1–16.

    Google Scholar 

  • Ejima, Y, Redies, C, Takahashi, S., &Akita, M. (1984). The neon color effect in the Ehrenstein pattern: Dependence on wavelength and illuminanceVision Research,24, 1719–1726

    PubMed  Article  Google Scholar 

  • Ellias, S, &Grossberg, S. (1975). Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks.Biological Cybernetics,20, 69–98.

    Article  Google Scholar 

  • Geman, S., &Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images.IEEE Patent Analysis & Machine Intelligence,6, 721–741

    Article  Google Scholar 

  • Glass, L, &Switkes, E. (1976). Pattern recognition in humans: Correlations which cannot be perceived.Perception,5, 67–72

    PubMed  Article  Google Scholar 

  • Gouras, P, &Kruger, J. (1979). Responses of cells in foveal visual cortex of the monkey to pure color contrast.Journal of Neurophysiology,42, 850–860.

    PubMed  Google Scholar 

  • Gregory, R. L (1966).Eye and brain New York: McGraw-Hill.

    Google Scholar 

  • Gregory, R. L., &Heard, P. (1979). Border locking and the café wall illusion.Perception,8, 365–380.

    PubMed  Article  Google Scholar 

  • Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks.Studies in Applied Mathematics,52, 217–257.

    Google Scholar 

  • Grossberg, S. (1980). How does a brain build a cognitive code?Psychological Review,87, 1–51.

    PubMed  Article  Google Scholar 

  • Grossberg, S. (1982).Studies of mind and brain. Neural principles of learning, perception, development, cognition, and motor control. Boston: Reidel Press.

    Google Scholar 

  • Grossberg, S. (1983a) Neural substrates of binocular form perception: Filtering, matching, diffusion, and resonance. In E. Basar, H. Flohr, H. Haken, & A J. Mandell (Eds.),Synergetics of the brain New York: Springer

    Google Scholar 

  • Grossberg, S. (1983b) The quantized geometry of visual space The coherent computation of depth, form, and lightness.Behavioral & Brain Sciences,6, 625–692

    Article  Google Scholar 

  • Grossberg, S (1984a). Outline of a theory of brightness, color, and form perception. In E. Degreef & J. van Buggenhaut (Eds.),Trends in mathematical psychology. Amsterdam. North-Holland.

    Google Scholar 

  • Grossberg, S. (1984b). Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory. In R. Karrer, J. Cohen, & P. Tueting (Eds.),Brain and information. Event related potentials New York: New York Academy of Sciences.

    Google Scholar 

  • Grossberg, S. (1985).Cortical dynamics of depth, brightness, color, and form perception: A predictive synthesis Manuscript submitted for publication

  • Grossberg, S, &Levine, D. (1975). Some developmental and attentional biases in the contrast enhancement and short term memory of recurrent neural networks.Journal of Theoretical Biology,53, 341–380.

    PubMed  Article  Google Scholar 

  • Grossberg, S, &Mingolla, E. (1985a). Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading.Psychological Review,92, 173–211.

    PubMed  Article  Google Scholar 

  • Grossberg, S., & Mingolla, E. (1985b)Neural dynamics of surface perception. Boundary webs, illuminants, and shape-from-shading. Manuscript in preparation

  • Heggelund, P. (1981). Receptive field organisation of complex cells in cat striate cortex.Experimental Brain Research,42, 99–107

    Google Scholar 

  • Helmholtz, H. L F von (1962).Treatise on physiological optics (J P C. Southall, Trans ). New York Dover (Original work published 1890)

    Google Scholar 

  • Hoffman, W C (1970) Higher visual perception as prolongation of the basic Lie transformation groupMathematical Biosciences,6, 437–471.

    Article  Google Scholar 

  • Horn, B. K. P. (1977). Understanding image intensitiesArtificial Intelligence,8, 201–231.

    Article  Google Scholar 

  • Hubel, D H., &Wiesel, T N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortexJournal of Physiology,160, 106–154

    PubMed  Google Scholar 

  • Hubel, D. H., &Wiesel, T N. (1968). Receptive fields and functional rchitecture of monkey striate cortex.Journal of Physiology,195, 215–243.

    PubMed  Google Scholar 

  • Hubel, D H, &Wiesel, T. N (1977). Functional architecture of macaque monkey visual cortexProceedings of the Royal Society of London (B),198, 1–59

    Article  Google Scholar 

  • Julesz, B (1960) Binocular depth perception of computer-generated patternsBell System Technical Journal,39, 1125–1162

    Google Scholar 

  • Julesz, B (1971).Foundations of cyclopean perception Chicago. University of Chicago Press

    Google Scholar 

  • Kanisza, G (1955) Margini quasi-percettivi in campi con stimolazione omogenea.Revista di psicologia,49, 7–30.

    Google Scholar 

  • Kaplan, G. A. (1969) Kinetic disruption of optical texture: The perception of depth at an edge.Perception & Psychophysics,6, 193–198.

    Google Scholar 

  • Kawabata, N. (1984). Perception at the blind spot and similarity grouping.Perception & Psychophysics,36, 151–158

    Google Scholar 

  • Kennedy, J. M. (1979). Subjective contours, contrast, and assimilation In C. F. Nodine & D. F Fisher (Eds.),Perception and pictorial representation (pp. 167–195). New York. Praeger.

    Google Scholar 

  • Krauskopf, J. (1963). Effect of retinal image stabilization on the appearance of heterochromatic targets.Journal of the Optical Society of America,53, 741–744.

    PubMed  Article  Google Scholar 

  • Land, E H. (1977). The retinex theory of color visionScientific American,237, 108–128.

    PubMed  Article  Google Scholar 

  • Marr, D., &Hildreth, E. (1980) Theory of edge detectionProceedings of the Royal Society of London (B),207, 187–217

    Article  Google Scholar 

  • Marr, D., &Poggio, T. (1976) Cooperative computation of stereo disparityScience,194, 283–287.

    PubMed  Article  Google Scholar 

  • Mccourt, M. E (1983). Brightness induction and the café wall illusion.Perception,12, 131–142

    PubMed  Article  Google Scholar 

  • Neisser, U. (1967).Cognitive psychology. New York. Appleton-Century-Crofts

    Google Scholar 

  • Prandtl, A. (1927). Über gleichsinnige Induktion und die Lichtverteilung in gitterartigen Mustern.Zeitschrift fur Sinnesphysiologie,58, 263–307

    Google Scholar 

  • Prazdny, K. (1983). Illusory contours are not caused by simultaneous brightness contrastPerception & Psychophysics,34, 403–404.

    Google Scholar 

  • Prazdny, K (1984). On the perception of Glass patternsPerception,13, 469–478

    PubMed  Article  Google Scholar 

  • Prazdny, K (1985). On the nature of inducing forms generating perception of illusory contoursPerception & Psychophysics,37, 237–242

    Google Scholar 

  • Preyer, W (1897/1898). On certain optical phenomena. Letter to Professor E. C. Sanford.American Journal of Psychology,9, 42–44

    Article  Google Scholar 

  • Ratliff, F (1965)Mach bands. Quantitative studies on neural net-works in the retina New York: Holden-Day.

    Google Scholar 

  • Redies, C, &Spillmann, L. (1981) The neon color effect in the Ehrenstein illusionPerception,10, 667–681

    Article  Google Scholar 

  • Redies, C, Spillmann, L., &Kunz, K. (1984) Colored neon flanks and line gap enhancementVision Research,24, 1301–1309

    PubMed  Article  Google Scholar 

  • Schatz, B R (1977). The computation of immediate texture discriminationMIT AI Memo 426

  • Schiller, P. H., Finlay, B L, &Volman, S. F. (1976) Quantitative studies of single-cell properties in monkey striate cortex, I: Spatiotemporal organization of receptive fields.Journal of Neurophysiology,39, 1288–1319

    PubMed  Google Scholar 

  • Schwartz, E. L., Desimone, R., Albright, T., &Gross, C. G. (1983). Shape recognition and inferior temporal neurons.Proceedings of the National Academy of Sciences,80, 5776–5778.

    Article  Google Scholar 

  • Shapley, R, &Gordon, J. (1985) Nonlinearity in the perception of formPerception & Psychophysics,37, 84–88.

    Google Scholar 

  • Sperling, G. (1970). Binocular vision: A physical and a neural theory.American Journal of Psychology,83, 461–534.

    Article  Google Scholar 

  • Spillmann, L. (1985).Illusory brightness and contour perception: Current status and unresolved problems. Manuscript submitted for publication.

  • Sptitzer, H., &Hochstein, S. (1985). A complex-cell receptive field model.Journal of Neurophysiology,53, 1266–1286.

    Google Scholar 

  • Tanaka, M., Lee, B. B., &Creutzfeldt, O. D. (1983). Spectral tuning and contour representation in area 17 of the awake monkey. In J. D. Motion & L. T Sharpe (Eds.),Colour vision. New York: Academic Press.

    Google Scholar 

  • Todorović, D. (1983).Brightness perception and the Craik-O’Brien-Cornsweet effect. Unpublished MA thesis, University of Connecticut.

  • Van Tuijl, H. F. J M. (1975). A new visual illusion: Neonlike color spreading and complementary color induction between subjective contours.Acta Psychologien,39, 441–445.

    Article  Google Scholar 

  • Van Tuijl, H. F. J M., &De Weert, C. M. M (1979) Sensory conditions for the occurrence of the neon spreading illusion.Perception,8, 211–215.

    PubMed  Article  Google Scholar 

  • Van Tuijl, H F. J M., &Leeuwenberg, E. L. J. (1979). Neon color spreading and structural information measures.Perception & Psychophysics,25, 269–284.

    Article  Google Scholar 

  • Von Der Heydt, R., Peterhans, E., &Baumgartner, G. (1984). Illusory contours and cortical neuron responsesScience,224, 1260–1262.

    PubMed  Article  Google Scholar 

  • Werth Eimer, M. (1923). Untersuchungen zur Lehre von der Gestalt, II.Psychologische Forschung,4, 301–350.

    Article  Google Scholar 

  • Wolfe, J. M. (1984). Global factors in the Hermann grid illusionPerception,13, 33–40.

    PubMed  Article  Google Scholar 

  • Yarbus, A. L. (1967).Eye movements and vision. New York: Plenum Press.

    Google Scholar 

  • Zeki, S. (1983a). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours.Neuroscience,9, 741–765.

    PubMed  Article  Google Scholar 

  • Zeki, S. (1983b) Colour coding in the cerebral cortex: The responses of wavelength-selective and colour coded cells in monkey visual cortex to changes in wavelength composition.Neuroscience,9, 767–791.

    PubMed  Article  Google Scholar 

  • Zucker, S.W. (1985).Early orientation selection: Tangent fields and the dimensionality of their support (Technical Report 85-13-R) Montreal: McGill University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S. Grossberg was supported in part by the Air Force Office of Scientific Research (AFOSR 85-0149) and the Army Research Office (DAAG-29-85-K-0095). E. Mingolla was supported in part by the Air Force Office of Scientific Research (AFOSR 85-0149).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grossberg, S., Mingolla, E. Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations. Perception & Psychophysics 38, 141–171 (1985). https://doi.org/10.3758/BF03198851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BF03198851

Keywords

  • Receptive Field
  • Perceptual Grouping
  • Illusory Contour
  • Subjective Contour
  • Boundary Contour