Models of covariation-based causal judgment: A review and synthesis

Abstract

Causal judgment is assumed to play a central role in prediction, control, and explanation. Here, we consider the function or functions that map contingency information concerning the relationship between a single cue and a single outcome onto causal judgments. We evaluate normative accounts of causal induction and report the findings of an extensive meta-analysis in which we used a cross-validation model-fitting method and carried out a qualitative analysis of experimental trends in order to compare a number of alternative models. The best model to emerge from this competition is one in which judgments are based on the difference between the amount of confirming and disconfirming evidence. A rational justification for the use of this model is proposed.

References

  1. Aitken, M. R. F., Larkin, M. J. W., &Dickinson, A. (2000). Superlearning of causal judgements.Quarterly Journal of Experimental Psychology,53B, 59–81.

    Google Scholar 

  2. Aitken, M. R. F., Larkin, M. J. W., &Dickinson, A. (2001). Re-examination of the role of within-compound associations in the retrospective revaluation of causal judgements.Quarterly Journal of Experimental Psychology,54B, 27–51.

    Google Scholar 

  3. Allan, L. G. (1993). Human contingency judgments: Rule based or associative?Psychological Bulletin,114, 435–448.

    PubMed  Article  Google Scholar 

  4. Allan, L. G. (2003). Assessing power PC.Learning & Behavior,31, 192–204.

    Article  Google Scholar 

  5. Allan, L. G., &Jenkins, H. M. (1983). The effect of representations of binary variables on judgment of influence.Learning & Motivation,14, 381–405.

    Article  Google Scholar 

  6. Anderson, J. R. (1990).The adaptive character of thought. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  7. Anderson, J. R., &Sheu, C.-F, (1995). Causal inferences as perceptual judgments.Memory & Cognition,23, 510–524.

    Article  Google Scholar 

  8. Baker, A. G., Vallée-Tourangeau, F., &Murphy, R. A. (2000). Asymptotic judgment of cause in a relative validity paradigm.Memory & Cognition,28, 466–479.

    Article  Google Scholar 

  9. Buehner, M. J., &Cheng, P. W. (1997). Causal induction: The power PC theory versus the RW model. In M. G. Shafto & P. Langley (Eds.),Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (pp. 55–69). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  10. Buehner, M. J., Cheng, P. W., &Clifford, D. (2003). From covariation to causation: A test of the assumption of causal power.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 1119–1140.

    Article  Google Scholar 

  11. Buehner, M. J., &May, J. (2003). Rethinking temporal contiguity and the judgement of causality: Effects of prior knowledge, experience, and reinforcement procedure.Quarterly Journal of Experimental Psychology,56A, 865–890.

    Google Scholar 

  12. Busemeyer, J. R. (1991). Intuitive statistical estimation. In N. H. Anderson (Ed.),Contributions to information integration theory (pp. 187–205). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  13. Catena, A., Maldonado, A., &Cándido, A. (1998). The effect of frequency of judgement and the type of trials on covariation learning.Journal of Experimental Psychology: Human Perception & Performance,24, 481–495.

    Article  Google Scholar 

  14. Chapman, G. B., &Robbins, S. J. (1990). Cue interaction in human contingency judgment.Memory & Cognition,18, 537–545.

    Article  Google Scholar 

  15. Cheng, P. W. (1993). Separating causal laws from causal facts: Pressing the limits of statistical relevance. In D. L. Medin (Ed.),The psychology of learning and motivation: Advances in research and theory (Vol. 30, pp. 215–264). San Diego: Academic Press.

    Google Scholar 

  16. Cheng, P. W. (1997). From covariation to causation: A causal power theory.Psychological Review,104, 367–405.

    Article  Google Scholar 

  17. Cheng, P. W. (2000). Causality in the mind: Estimating contextual and conjunctive power. In F. C. Keil & R. A. Wilson (Eds.),Explanation and cognition (pp. 227–253). Cambridge, MA: MIT Press.

    Google Scholar 

  18. Cheng, P. W., &Holyoak, K. J. (1995). Complex adaptive systems as intuitive statisticians: Causality, contingency, and prediction. In H. L. Roitblat & J.-A. Meyer (Eds.),Comparative approaches to cognitive science (pp. 271–302). Cambridge, MA: MIT Press.

    Google Scholar 

  19. Cheng, P. W., &Novick, L. R. (1992). Covariation in natural causal induction.Psychological Review,99, 365–382.

    PubMed  Article  Google Scholar 

  20. Collins, D. J., &Shanks, D. R. (2006). Conformity to the power PC theory of causal induction depends on type of probe question.Quarterly Journal of Experimental Psychology,59, 225–232.

    Article  Google Scholar 

  21. Danks, D. J. (2002). The epistemology of causal judgment.Dissertation Abstracts International,63, 212.

    Google Scholar 

  22. De Houwer, J., &Beckers, T. (2002). A review of recent developments in research and theories on human contingency learning.Quarterly Journal of Experimental Psychology,55B, 289–310.

    Google Scholar 

  23. Dickinson, A., &Burke, J. (1996). Within-compound associations mediate the retrospective revaluation of causality judgements.Quarterly Journal of Experimental Psychology,49B, 60–80.

    Google Scholar 

  24. Glautier, S. (2002). Spatial separation of target and competitor cues enhances blocking of human causality judgements.Quarterly Journal of Experimental Psychology,55B, 121–135.

    Google Scholar 

  25. Glymour, C. (1998). Learning causes: Psychological explanations of causal explanation.Mind & Machines,8, 39–60.

    Article  Google Scholar 

  26. Glymour, C. (2001).The mind’s arrows: Bayes nets and graphical causal models in psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  27. Glymour, C., Scheines, R., Spirtes, P., &Kelly, K. (1987).Discovering causal structure: Artificial intelligence, philosophy of science, and statistical modeling. San Diego: Academic Press.

    Google Scholar 

  28. Griffiths, T. L., &Tenenbaum, J. B. (2005). Structure and strength in causal induction.Cognitive Psychology,51, 334–384.

    PubMed  Article  Google Scholar 

  29. Inhelder, B., &Piaget, J. (1958).The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. Oxford: Basic Books.

    Book  Google Scholar 

  30. Lagnado, D., &Sloman, S. A. (2004). The advantage of timely intervention.Journal of Experimental Psychology: Learning, Memory, & Cognition,30, 856–876.

    Article  Google Scholar 

  31. Levin, I. P., Wasserman, E. A., &Kao, S.-F. (1993). Multiple methods for examining biased information use in contingency judgments.Organizational Behavior & Human Decision Processes,55, 228–250.

    Article  Google Scholar 

  32. Lober, K., &Shanks, D. R. (2000). Is causal induction based on causal power? Critique of Cheng (1997).Psychological Review,107, 195–212.

    PubMed  Article  Google Scholar 

  33. Lovibond, P. F. (2003). Causal beliefs and conditioned responses: Retrospective revaluation induced by experience and by instruction.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 97–106.

    Article  Google Scholar 

  34. Maldonado, A., Jiménez, G., Herrera, A., Perales, J. C., &Catena, A. (2006). Inattentional blindness for negative relationships in human causal learning.Quarterly Journal of Experimental Psychology,59, 457–470.

    Article  Google Scholar 

  35. Mandel, D. R., &Lehman, D. R. (1998). Integration of contingency information in judgments of cause, covariation, and probability.Journal of Experimental Psychology: General,127, 269–285.

    Article  Google Scholar 

  36. Myung, I. J., Foster, M. R., & Browne, M. W. (Eds.) (2000). Special issue on model selection.Journal of Mathematical Psychology,44, 1–231.

    Google Scholar 

  37. Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning.Psychological Review,94, 61–73.

    PubMed  Article  Google Scholar 

  38. Pearl, J. (1988).Probabilistic reasoning in intelligent systems. San Francisco: Morgan Kaufmann.

    Google Scholar 

  39. Pearl, J. (2000).Causality: Models, reasoning, and inference. New York: Cambridge University Press.

    Google Scholar 

  40. Perales, J. C., &Catena, A. (2006). Human causal induction: A glimpse at the whole picture.European Journal of Cognitive Psychology,18, 277–320.

    Article  Google Scholar 

  41. Perales, J. C., Catena, A., &Maldonado, A. (2004). Inferring non-observed correlations from causal scenarios: The role of causal knowledge.Learning & Motivation,35, 115–135.

    Article  Google Scholar 

  42. Perales, J. C., Catena, A.,Shanks, D. R., &González, J. A. (2005). Dissociation between judgments and outcome-expectancy measures in covariation learning: A signal detection theory approach.Journal of Experimental Psychology: Learning, Memory, & Cognition,31, 1105–1120.

    Article  Google Scholar 

  43. Perales, J. C., &Shanks, D. R. (2003). Normative and descriptive accounts of the influence of power and contingency on causal judgement.Quarterly Journal of Experimental Psychology,56A, 977–1007.

    Google Scholar 

  44. Perales, J. C., & Shanks, D. R. (2004, May).The cause-density effect as a tool to discriminate between causal learning models. Paper presented at the Special Interest Meeting on Human Contingency Learning, Lignely, Belgium.

  45. Rescorla, R. A., &Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations of the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.),Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  46. Schustack, M. W., &Sternberg, R. J. (1981). Evaluation of evidence in causal inference.Journal of Experimental Psychology: General,110, 101–120.

    Article  Google Scholar 

  47. Shanks, D. R. (1995).The psychology of associative learning. New York: Cambridge University Press.

    Book  Google Scholar 

  48. Shanks, D. R. (2002). Tests of the power PC theory of causal induction with negative contingencies.Experimental Psychology,49, 81–88.

    PubMed  Google Scholar 

  49. Shanks, D. R., &Dickinson, A. (1987). Associative accounts of causality judgment. In G. H. Bower (Ed.),The psychology of learning and motivation: Vol. 21. Advances in research and theory (pp. 229–261). San Diego: Academic Press.

    Google Scholar 

  50. Shanks, D. R., Holyoak, K., &Medin, D. L. (Eds.) (1996).The psychology of learning and motivation: Vol. 34. Causal learning. San Diego: Academic Press.

    Google Scholar 

  51. Shanks, D. R., Pearson, S. M., &Dickinson, A. (1989). Temporal contiguity and the judgement of causality by human subjects.Quarterly Journal of Experimental Psychology,41B, 139–159.

    Google Scholar 

  52. Sloman, S. A. (2005).Causal models: How people think about the world and its alternatives. Oxford: Oxford University Press.

    Google Scholar 

  53. Sloman, S. A., &Lagnado, D. (2004). Causal invariance in reasoning and learning. In B. Ross (Ed.),The psychology of learning and motivation: Vol. 44. Advances in research and theory (pp. 207–325). San Diego: Academic Press.

    Google Scholar 

  54. Smedslund, J. (1963). The concept of correlation in adults.Scandinavian Journal of Psychology,4, 165–173.

    Article  Google Scholar 

  55. Spirtes, P., Glymour, C., &Scheines, R. (1998).Causation, prediction, and search. Cambridge, MA: MIT Press.

    Google Scholar 

  56. Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J., &Blum, B. (2003). Inferring causal networks from observations and interventions.Cognitive Science,27, 453–489.

    Article  Google Scholar 

  57. Tenenbaum, J. B., &Griffiths, T. L. (2001). Structure learning in human causal induction. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.),Advances in neural information processing systems (Vol. 13, pp. 59–65). Cambridge, MA: MIT Press.

    Google Scholar 

  58. Vallée-Tourangeau, F., Murphy, R. A., Drew, S., &Baker, A. G. (1998). Judging the importance of constant and variable candidate causes: A test of the power PC theory.Quarterly Journal of Experimental Psychology,51A, 65–84.

    Google Scholar 

  59. Van-Hamme, L. J., &Wasserman, E. A. (1994). Cue competition in causality judgments: The role of nonpresentation of compound stimulus elements.Learning & Motivation,25, 127–151.

    Article  Google Scholar 

  60. Waldmann, M. R. (2000). Competition among causes but not effects in predictive and diagnostic learning.Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 53–76.

    Article  Google Scholar 

  61. Waldmann, M. R., &Hagmayer, Y. (2001). Estimating causal strength: The role of structural knowledge and processing effort.Cognition,82, 27–58.

    PubMed  Article  Google Scholar 

  62. Waldmann, M. R., &Holyoak, K. J. (1992). Predictive and diagnostic learning within causal models: Asymmetries in cue competition.Journal of Experimental Psychology: General,121, 222–236.

    Article  Google Scholar 

  63. Waldmann, M. R., &Holyoak, K. J. (1997). Determining whether causal order affects cue selection in human contingency learning: Comments on Shanks and Lopez (1996).Memory & Cognition,25, 125–134.

    Article  Google Scholar 

  64. Wasserman, E. A. (1993). Comparative cognition: Toward a general understanding of cognition in behavior.Psychological Science,4, 156–161.

    Article  Google Scholar 

  65. Wasserman, E. A., Kao, S.-F., Van-Hamme, L. J., Katagiri, M., &Young, M. E. (1996). Causation and association. In D. R. Shanks, K. J. Holyoak, & D. L. Medin (Eds.),The psychology of learning and motivation: Vol. 34. Causal learning (pp. 207–264). San Diego: Academic Press.

    Chapter  Google Scholar 

  66. White, P. A. (2003a). Causal judgement as evaluation of evidence: The use of confirmatory and disconfirmatory information.Quarterly Journal of Experimental Psychology,56A, 491–513.

    Google Scholar 

  67. White, P. A. (2003b). Effects of wording and stimulus format on the use of contingency information in causal judgment.Memory & Cognition,31, 231–242.

    Article  Google Scholar 

  68. White, P. A. (2003c). Making causal judgments from the proportion of confirming instances: The pCI rule.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 710–727.

    Article  Google Scholar 

  69. White, P. A. (2004). Causal judgment from contingency information: A systematic test of the pCI rule.Memory & Cognition,32, 353–368.

    Article  Google Scholar 

  70. White, P. A. (2005a). Cue interaction effects in causal judgment: An interpretation in terms of the evidential evaluation model.Quarterly Journal of Experimental Psychology,58B, 99–140.

    Google Scholar 

  71. White, P. A. (2005b). Judgement of two causal candidates from contingency information: II. Effects of information about one cause on judgements of the other cause.Quarterly Journal of Experimental Psychology,58A, 999–1021.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to José C. Perales.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perales, J.C., Shanks, D.R. Models of covariation-based causal judgment: A review and synthesis. Psychonomic Bulletin & Review 14, 577–596 (2007). https://doi.org/10.3758/BF03196807

Download citation

Keywords

  • Causal Structure
  • Associative Strength
  • Causal Power
  • Causal Judgment
  • Causal Belief