Psychonomic Bulletin & Review

, Volume 14, Issue 4, pp 560–576 | Cite as

The divergent autoencoder (DIVA) model of category learning

  • Kenneth J. KurtzEmail author
Theoretical and Review Articles


A novel theoretical approach to human category learning is proposed in which categories are represented as coordinated statistical models of the properties of the members. Key elements of the account are learning to recode inputs as task-constrained principle components and evaluating category membership in terms of model fit—that is, the fidelity of the reconstruction after recoding and decoding the stimulus. The approach is implemented as a computational model called DIVA (for DIVergent Autoencoder), an artificial neural network that uses reconstructive learning to solve N-way classification tasks. DIVA shows good qualitative fits to benchmark human learning data and provides a compelling theoretical alternative to established models.


Principle Component Analysis Hide Node Category Structure Category Learning Training Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahn, W., Kim, N., Lassaline, M., &Dennis, M. (2000). Causal status as a determinant of feature centrality.Cognitive Psychology,41, 361–416.PubMedGoogle Scholar
  2. Anderson, J. A., Silverstein, J. W., Ritz, S. A., &Jones, R. S. (1977). Distinctive features, categorical perception and probability learning: Some applications of a neural model.Psychological Review,84, 413–451.Google Scholar
  3. Anderson, J. R. (1991). The adaptive nature of human categorization.Psychological Review,98, 409–429.Google Scholar
  4. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., &Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning.Psychological Review,105, 442–481.PubMedGoogle Scholar
  5. Ashby, F. G., &Maddox, W. (1993). Relations between prototype, exemplar, and decision bound models of categorization.Journal of Mathematical Psychology,37, 372–400.Google Scholar
  6. Ashby, F. G., &Maddox, W. (2005). Human category learning.Annual Review of Psychology,56, 149–178.PubMedGoogle Scholar
  7. Ashby, F. G., Maddox, W., &Bohil, C. (2002). Observational versus feedback training in rule-based and information-integration category learning.Memory & Cognition,30, 666–677.Google Scholar
  8. Ashby, F. G., Maddox, W. T., &Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling on the similarity-choice model.Psychological Science,5, 144–151.Google Scholar
  9. Baldi, P., &Hornik, K. (1989). Neural networks and principal components analysis: Learning from examples without local minima.Neural Networks,2, 53–58.Google Scholar
  10. Becker, S., &Plumbley, M. (1996). Unsupervised neural network learning procedures for feature extraction and classification.Applied Intelligence,6, 185–203.Google Scholar
  11. Ben-David, S., & Schuller, R. (2003). Exploiting task relatedness for multiple task learning. InProceedings of Computational Learning Theory (COLT) (pp. 567–580).Google Scholar
  12. Boulard, H., &Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition.Biological Cybernetics,59, 291–294.Google Scholar
  13. Brooks, L. R. (1978). Nonanalytic concept formation and memory for instances. In E. Rosch & B. Lloyd (Eds.),Cognition and categorization (pp. 169–211). Hillsdale, NJ: Erlbaum.Google Scholar
  14. Caruana, R. (1995). Learning many related tasks at the same time with backpropagation. In G. Tessauro, D. S. Touretzky, & T. K. Leen (Eds.),Advances in neural information processing systems (Vol. 7, pp. 657–664). San Mateo, CA: Morgan Kaufmann.Google Scholar
  15. Castellano, G., Fanelli, A. M., &Pelillo, M. (1997). An iterative pruning algorithm for feedforward neural networks.IEEE Transactions on Neural Networks,8, 519–531.PubMedGoogle Scholar
  16. Chen, S., &Sun, T. (2005). Class-information-incorporated principle component analysis.Neurocomputing,69, 216–223.Google Scholar
  17. Cottrell, G. W., Munro, P., &Zipser, D. (1988). Image compression by backpropagation: An example of extensional programming. In N. E. Sharkey (Ed.),Advances in cognitive science (Vol. 3). Norwood, NJ: Ablex.Google Scholar
  18. DeMers, D., &Cottrell, G. (1993). Nonlinear dimensionality reduction. In S. J. Hanson, J. Cowan, & L. Giles (Eds.),Advances in neural information processing systems (Vol. 5, pp. 580–587). San Mateo, CA: Morgan Kaufmann.Google Scholar
  19. Duda, R., &Hart, P. (1973).Pattern classification and scene analysis. New York: Wiley.Google Scholar
  20. Edelman, S., &Intrator, N. (1998). Learning as extraction of lowdimensional representations. In R. Goldstone, P. Schyns, & D. Medin (Eds.),Mechanisms of perceptual learning (pp. 353–376). San Diego: Academic Press.Google Scholar
  21. Ellis, R., &Humphreys, G. L. (Eds.). (1999).Connectionist psychology: A text with readings. Hove, U.K.: Psychology Press.Google Scholar
  22. Erickson, M. A., &Kruschke, J. K. (1998). Rules and exemplars in category learning.Journal of Experimental Psychology: General,127, 107–140.Google Scholar
  23. Fahlman, S. E., &Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.),Advances in neural information processing systems (Vol. 1, pp. 524–532). San Mateo, CA: Morgan Kaufmann.Google Scholar
  24. French, R. (1999). Catastrophic forgetting in connectionist networks.Trends in Cognitive Science,3, 128–135.Google Scholar
  25. Fried, L., &Holyoak, K. (1984). Induction of category distributions: A framework for classification learning.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 234–257.Google Scholar
  26. Garner, W. R. (1974).The processing of information and structure. Hillsdale, NJ: Erlbaum.Google Scholar
  27. Gluck, M. A., &Bower, G. (1988). From conditioning to category learning: An adaptive network model.Journal of Experimental Psychology: General,119, 105–109.Google Scholar
  28. Gluck, M. A., &Myers, C. E. (1993). Hippocampal mediation of stimulus representation: A computational theory.Hippocampus,3, 491–516.PubMedGoogle Scholar
  29. Goldstone, R. L. (1994). The role of similarity in categorization: Providing a groundwork.Cognition,52, 125–157.PubMedGoogle Scholar
  30. Goldstone, R. L., &Kersten, A. (2003). Concepts and categories. In A. F. Healy & R. W. Proctor (Eds.),Comprehensive handbook of psychology: Experimental psychology (Vol. 4, pp. 599–621). New York: Wiley.Google Scholar
  31. Guenther, F. (1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production.Psychological Review,102, 594–621.PubMedGoogle Scholar
  32. Hampton, J. (1979). Polymorphous concepts in semantic memory.Journal of Verbal Learning & Verbal Behavior,18, 441–461.Google Scholar
  33. Harnad, S., Hanson, S., &Lubin, J. (1995). Learned categorical perception in neural nets: Implications for symbol grounding. In V. Honavar & L. Uhr (Eds.),Symbol processors and connectionist network models in artificial intelligence and cognitive modeling: Steps toward principled integration (pp. 191–206). San Diego: Academic Press.Google Scholar
  34. Intrator, N., &Edelman, S. (1997). Learning low-dimensional representations via the usage of multiple-class labels.Network,8, 259–281.Google Scholar
  35. Japkowicz, N. (2001). Supervised versus unsupervised binary-learning by feedforward neural networks.Machine Learning,42, 97–122.Google Scholar
  36. Japkowicz, N., Hanson, S. J., &Gluck, M. A. (2000). Nonlinear autoassociation is not equivalent to PCA.Neural Computation,12, 531–545.PubMedGoogle Scholar
  37. Japkowicz, N., Myers, C., & Gluck, M. (1995). A novelty detection approach to classification. InProceedings of the 14th International Joint Conference on Artificial Intelligence (Vol. 1, pp. 518–523). Montreal.Google Scholar
  38. Joliffe, I. T. (1986).Principal component analysis. New York: Springer.Google Scholar
  39. Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained neural networks.IEEE Transactions on Neural Networks,1, 239–242.PubMedGoogle Scholar
  40. Knapp, A. G., &Anderson, J. A. (1984). Theory of categorization based on distributed memory storage.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 616–637.Google Scholar
  41. Knowlton, B. J., &Squire, L. R. (1993). The learning of categories: Parallel brain systems for item memory and category knowledge.Science,262, 1747–1749.PubMedGoogle Scholar
  42. Kohonen, T. (1977).Associative memories. Berlin: Springer.Google Scholar
  43. Kolen, J. F., &Pollack, J. B. (1990). Back-propagation is sensitive to initial conditions.Complex Systems,4, 269–280.Google Scholar
  44. Kramer, M. A. (1991). Nonlinear principal components analysis using autoassociative neural networks.American Institute of Chemical Engineers Journal,37, 233–243.Google Scholar
  45. Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning.Psychological Review,99, 22–44.PubMedGoogle Scholar
  46. Kruschke, J. K. (1993). Human category learning: Implications for backpropagation models.Connection Science,5, 3–36.Google Scholar
  47. Kruschke, J. K. (2005). Category learning. In K. Lamberts & R. Goldstone (Eds.),The handbook of cognition (pp. 183–201). London: Sage.Google Scholar
  48. Kurtz, K. J. (2005). The Divergent Autoencoder (DIVA) account of human category learning. In B. Bara, L. Barsalou, & M. Bucciarelli (Eds.),Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 1214–1219). Mahwah, NJ: Erlbaum.Google Scholar
  49. Kurtz, K. J., & Beck, J. (2007).On the locus of learning in supervised classification: A componential analysis. Manuscript submitted for publication.Google Scholar
  50. Kurtz, K. J., & Dietrich, E. (2007).Construing categories. Manuscript submitted for publication.Google Scholar
  51. Kurtz, K. J., Martin, M., & Walker-Hodkin, A. (2007).On the roles of abstraction and attention in human category learning: Revisiting a classic result. Manuscript in preparation.Google Scholar
  52. Kurtz, K. J., & Smith, G. (2007).The ORACL account of the internal structure of concepts. Manuscript in preparation.Google Scholar
  53. Lee, M. D., &Webb, M. R. (2005). Modeling individual differences in cognition.Psychonomic Bulletin & Review,12, 605–621.Google Scholar
  54. Love, B. C. (2002). Comparing supervised and unsupervised category learning.Psychonomic Bulletin & Review,9, 829–835.Google Scholar
  55. Love, B. C., Medin, D. L., &Gureckis, T. M. (2004). SUSTAIN: A network model of category learning.Psychological Review,111, 309–332.PubMedGoogle Scholar
  56. Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology (pp. 103–189). New York: Wiley.Google Scholar
  57. Mareschal, D., &French, R. M. (2000). Mechanisms of categorization in infancy.Infancy,1, 59–76.Google Scholar
  58. Mareschal, D., Quinn, P. C., &French, R. M. (2002). Asymmetric interference in 3- to 4-month-olds’ sequential category learning.Cognitive Science,26, 377–389.Google Scholar
  59. Markman, A. B., &Ross, B. H. (2003). Category use and category learning.Psychological Bulletin,129, 592–613.PubMedGoogle Scholar
  60. Marr, D. (1982).Vision. San Francisco: Freeman.Google Scholar
  61. Matsuka, T. (2004). Generalized exploratory models of human category learning.International Journal of Computational Intelligence,1, 8–15.Google Scholar
  62. McClelland, J. L., &Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information.Journal of Experimental Psychology: General,114, 159–188.Google Scholar
  63. McClelland, J. L., &Rumelhart, D. E. (1986). A distributed model of memory. In D. E. Rumelhart & J. L. McClelland (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Vol 2: Applications (pp. 170–215). Cambridge, MA: MIT Press.Google Scholar
  64. McCloskey, M., &Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. In G. H. Bower (Ed.),The psychology of learning and motivation (Vol. 24, pp. 109–165). New York: Academic Press.Google Scholar
  65. Medin, D. L. (1989). Concepts and conceptual structure.American Psychologist,44, 1469–1481.PubMedGoogle Scholar
  66. Medin, D. L., Goldstone, R. L., &Gentner, D. (1993). Respects for similarity.Psychological Review,100, 254–278.Google Scholar
  67. Medin, D. L., &Ross, B. H. (1989). The specific character of abstract thought: Categorization, problem solving, and induction. In R. J. Sternberg (Ed.),Advances in the psychology of human intelligence (Vol. 5, pp. 189–223). Hillsdale, NJ: Erlbaum.Google Scholar
  68. Medin, D. L., &Schaffer, M. M. (1978). Context theory of classification learning.Psychological Review,85, 207–238.Google Scholar
  69. Medin, D. L., &Schwanenflugel, P. J. (1981). Linear separability in classification learning.Journal of Experimental Psychology: Human Learning & Memory,7, 355–368.Google Scholar
  70. Minda, J. P., &Smith, J. D. (2001). Prototypes in category learning: The effects of category size, category structure, and stimulus complexity.Journal of Experimental Psychology: Learning, Memory, & Cognition,27, 775–799.Google Scholar
  71. Minda, J., &Smith, J. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation.Journal of Experimental Psychology: Learning, Memory, & Cognition,28, 275–292.Google Scholar
  72. Murphy, G. L. (2002).The big book of concepts. Cambridge, MA: MIT Press.Google Scholar
  73. Murphy, G. L. (Ed.) (2005). The study of concepts inside and outside the laboratory: Medin versus Medin. In W. K. Ahn, R. L. Goldstone, B. C. Love, A. B. Markman, & P. W. Wolff (Eds.),Categorization inside and outside the laboratory (pp. 179–195). Washington, DC: American Psychological Association.Google Scholar
  74. Murphy, G. L., &Medin, D. L. (1985). The role of theories in conceptual coherence.Psychological Review,92, 289–316.PubMedGoogle Scholar
  75. Nosofsky, R. M. (1986). Attention, similarity and the identificationcategorization relationship.Journal of Experimental Psychology: General,115, 39–57.Google Scholar
  76. Nosofsky, R. M. (1988). Similarity, frequency, and category representations.Journal of Experimental Psychology: Learning, Memory, & Cognition,14, 54–65.Google Scholar
  77. Nosofsky, R. M. (1991). Tests of an exemplar model for relating classification and recognition memory.Journal of Experimental Psychology: Human Perception & Performance,17, 3–27.Google Scholar
  78. Nosofsky, R. M. (2000). Exemplar representation without generalization? Comment on Smith and Minda’s (2000) “Thirty categorization results in search of a model.”Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 1735–1743.Google Scholar
  79. Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., &Glauthier, P. (1994). Comparing models of rule-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961).Memory & Cognition,22, 352–369.Google Scholar
  80. Nosofsky, R. M., &Johansen, M. K. (2000). Exemplar-based accounts of “multiple-system” phenomena in perceptual categorization.Psychonomic Bulletin & Review,7, 375–402.Google Scholar
  81. Nosofsky, R. M., Kruschke, J., &McKinley, S. (1992). Combining exemplar-based category representations and connectionist learning rules.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 211–233.Google Scholar
  82. Nosofsky, R. M., &Palmeri, T. J. (1996). Learning to classify integraldimension stimuli.Psychonomic Bulletin & Review,3, 222–226.Google Scholar
  83. Nosofsky, R. M., &Palmeri, T. J. (1998). A rule-plus-exception model for classifying objects in continuous-dimension spaces.Psychonomic Bulletin & Review, 5, 345–369.Google Scholar
  84. Nosofsky, R. M., Palmeri, T. J., &McKinley, S. (1994). Rule-plusexception model of classification learning.Psychological Review,101, 55–79.Google Scholar
  85. Nosofsky, R. M., &Zaki, S. R. (1998). Dissociations between categorization and recognition in amnesic individuals: An exemplar-based interpretation.Psychological Science,9, 247–255.Google Scholar
  86. Oja, E. (1983).Subspace methods of pattern recognition. New York: Wiley.Google Scholar
  87. Oja, E. (1989). Neural networks, principal components, and subspaces.International Journal of Neural Systems,1, 61–68.Google Scholar
  88. O’Reilly, R. (1998). Six principles for biologically based computational models of cortical cognition.Trends in Cognitive Science,2, 455–462.Google Scholar
  89. Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., &Shafir, E. (1990). Category-based induction.Psychological Review,97, 185–200.Google Scholar
  90. Palmeri, T. J. (1999). Learning categories at different hierarchical levels: A comparison of category learning models.Psychonomic Bulletin & Review,6, 495–503.Google Scholar
  91. Palmeri, T. J., &Noelle, D. C. (2002). Concept learning. In M. Arbib (Ed.),Handbook of brain theory and neural networks (pp. 234–237). Cambridge, MA: MIT Press.Google Scholar
  92. Palmeri, T. J., &Nosofsky, R. M. (1995). Recognition memory for exceptions to the category rule.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 548–568.Google Scholar
  93. Poggio, T., &Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks.Science,247, 978–982.PubMedGoogle Scholar
  94. Posner, M. I. (1964). Information reduction in the analysis of sequential tasks.Psychology Review,71, 491–504.Google Scholar
  95. Posner, M. I., &Keele, S. (1968). On the genesis of abstract ideas.Journal of Experimental Psychology,77, 353–363.PubMedGoogle Scholar
  96. Ratcliff, R. (1990). Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions.Psychological Review,97, 285–308.PubMedGoogle Scholar
  97. Reed, S. (1972). Pattern recognition and categorization.Cognitive Psychology,3, 382–407.Google Scholar
  98. Reed, J. M., Squire, L. R., Patalano, A. L., Smith, E. E., &Jonides, J. (1999). Learning about categories that are defined by object-like stimuli despite impaired declarative memory.Behavioral Neuroscience,113, 411–419.PubMedGoogle Scholar
  99. Rehder, B. (2003). A causal-model theory of conceptual representation and categorization.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 1141–1159.Google Scholar
  100. Rehder, B., &Hoffman, A. B. (2005a). Eyetracking and selective attention in category learning.Cognitive Psychology,51, 1–41.PubMedGoogle Scholar
  101. Rehder, B., &Hoffman, A. B. (2005b). Thirty-something categorization results explained: Selective attention, eyetracking, and model of category learning.Journal of Experimental Psychology: Learning, Memory, & Cognition,31, 811–829.Google Scholar
  102. Rips, L. J. (1975). Inductive judgments about natural categories.Journal of Verbal Learning & Verbal Behavior,14, 665–681.Google Scholar
  103. Roberts, S., &Paschler, H. (2000). How persuasive is a good fit? A comment on theory testing.Psychological Review,107, 358–367.PubMedGoogle Scholar
  104. Rodgers, J., &Rowe, D. C. (2002). Theory development should begin (but not end) with good empirical fits: A comment on Roberts and Pashler.Psychological Review,109, 599–604.PubMedGoogle Scholar
  105. Rogers, T., &McClelland, J. L. (2004).Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.Google Scholar
  106. Rosch, E., &Mervis, C. (1975). Family resemblances: Studies in the internal structure of categories.Cognitive Psychology,7, 573–605.Google Scholar
  107. Rumelhart, D. E. (1989). Toward a microstructural account of human reasoning. In S. Vosniadou & A. Ortony (Eds.),Similarity and analogical reasoning (pp. 298–312). New York: Cambridge University Press.Google Scholar
  108. Rumelhart, D. E. (1990). Brain style computation: Learning and generalization. In S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.),An introduction to neural and electronic networks (pp. 405–420). San Diego: Academic Press.Google Scholar
  109. Rumelhart, D. E., Durbin, R., Golden, R., &Chauvin, Y. (1995). Backpropagation: The basic theory. In Y. Chauvin & D. E. Rumelhart (Eds.),Mathematical perspectives on neural networks (pp. 533–566). Mahwah, NJ: Erlbaum.Google Scholar
  110. Rumelhart, D. E., Hinton, G. E., &Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Vol 1. Foundations (pp. 318–362). Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  111. Rumelhart, D. E., McClelland, J. L., &the PDP Research Group (1986).Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations. Cambridge, MA: MIT Press, Bradford Press.Google Scholar
  112. Saegusa, R., Sakano, H., & Hashimoto, S. (2004). A nonlinear principal component analysis on image data. InProceedings of the 14th IEEE International Workshop on Machine Learning for Signal Processing.Google Scholar
  113. Sakamoto, Y., &Love, B. (2004). Schematic influences on category learning and recognition memory.Journal of Experimental Psychology: General,133, 534–553.Google Scholar
  114. Schyns, P., Goldstone, R., &Thibaut, J. (1998). The development of features in object concepts.Behavioral & Brain Sciences,21, 1–54.Google Scholar
  115. Shanks, D. (1991). Categorization by a connectionist network.Journal of Experimental Psychology: Learning, Memory, & Cognition,17, 433–443.Google Scholar
  116. Shepard, R. N., &Chang, J. J. (1963). Stimulus generalization in the learning of classifications.Journal of Experimental Psychology,65, 94–102.PubMedGoogle Scholar
  117. Shepard, R. N., Hovland, C. L., &Jenkins, H. M. (1961). Learning and memorization of classifications.Psychological Monographs,75, 42.Google Scholar
  118. Smith, E. E., &Medin, D. L. (1981).Categories and concepts. Cambridge, MA: Harvard University Press.Google Scholar
  119. Smith, E. E., Patalano, A. L., &Jonides, J. (1998). Alternative strategies of categorization.Cognition,65, 167–196.PubMedGoogle Scholar
  120. Smith, J. D., &Minda, J. P. (2000). Thirty categorization results in search of a model.Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 3–27.Google Scholar
  121. Tversky, A. (1977). Features of similarity.Psychological Review,84, 327–352.Google Scholar
  122. Wattenmaker, W. D. (1991). Learning modes, feature correlations, and memory-based categorization.Journal of Experimental Psychology: Learning, Memory, & Cognition,17, 908–923.Google Scholar
  123. Wisniewski, E. J., &Medin, D. L. (1994). On the interaction of theory and data in concept learning.Cognitive Science,18, 221–281.Google Scholar
  124. Xie, X., &Seung, H. (2003). Equivalence of backpropagation and contrastive Hebbian learning in a layered network.Neural Computation,15, 441–454.PubMedGoogle Scholar
  125. Yamauchi, T., &Markman, A. (1998). Category learning by inference and categorization.Journal of Memory & Language,39, 124–148.Google Scholar
  126. Yamauchi, T., Love, B., &Markman, A. (2002). Learning nonlinearly separable categories by inference and classification.Journal of Experimental Psychology: Learning, Memory, & Cognition,28, 585–593.Google Scholar
  127. Zaki, S. R., &Nosofsky, R. M. (2001). A single-system interpretation of dissociations between recognition and categorization in a task involving object-like stimuli.Cognitive, Affective, & Behavioral Neuroscience,1, 344–359.Google Scholar
  128. Zhang, G. (2000). Neural networks for classification: A survey.IEEE Transactions on System, Man, & Cybernetics,30, 451–462.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.Department of PsychologyBinghamton UniversityBinghamton

Personalised recommendations