Attention, Perception, & Psychophysics

, Volume 72, Issue 8, pp 2289–2303 | Cite as

Updating and feature overwriting in short-term memory for timbre

Research Articles


Previous research has demonstrated a potent, stimulus-specific form of interference in short-term auditory memory. This effect has been interpreted in terms of interitem confusion and grouping, but the present experiments suggested that interference might be afeature-specific phenomenon. Participants compared standard and comparison tones over a 10-sec interval and were required to determine whether they differed in timbre. A single interfering distractor tone was presented either 50 msec or 8 sec after the offset of the standard (Experiment 1) or 2 sec prior to its onset (Experiment 2). The distractor varied in the number of features it shared with the standard and comparison, and this proved critical, since performance on the task was greatly impaired when the distractor either consisted of novel, unshared features (Experiment 1) or contained the distinguishing feature of the comparison tone (Experiments 1 and 2). These findings were incompatible with earlier accounts of forgetting but were fully explicable by the recent timbre memory model, which associates interference in short-term auditory memory with an “updating” process and feature overwriting. These results suggest similarities with the mechanisms that underlie forgetting in verbal short-term memory.


  1. Alvarez, G. A., &Cavanagh, P. (2008). Visual short-term memory operates more efficiently on boundary features than on surface features.Perception & Psychophysics,70, 346–364. doi:10.3758/PP.70.2.346CrossRefGoogle Scholar
  2. Bachem, A. (1954). Time factors in relative and absolute pitch determination.Journal of the Acoustical Society of America,26, 751–753. doi:10.1121/1.1907411CrossRefGoogle Scholar
  3. Berman, M. G., Jonides, J., &Lewis, R. L. (2009). In search of decay in verbal short-term memory.Journal of Experimental Psychology: Learning, Memory, & Cognition,35, 317–333. doi:10.1037/ a0014873CrossRefGoogle Scholar
  4. Berti, S., Münzer, S., Schröger, E., &Pechmann, T. (2006). Different interference effects in musicians and a control group.Experimental Psychology,53, 111–116. doi:10.1027/1618-3169.53.2.111PubMedGoogle Scholar
  5. Bi, J. (2002). Variance ofd’ for the same-different method.Behavior Research Methods, Instruments, & Computers,34, 37–45.Google Scholar
  6. Brosch, M., Schulz, A., &Scheich, H. (1999). Processing of sound sequences in macaque auditory cortex: Response enhancement.Journal of Neurophysiology,82, 1542–1559.PubMedGoogle Scholar
  7. Camos, V., Lagner, P., &Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory.Journal of Memory & Language,61, 457–469. doi:10.1016/j.jml.2009.06.002CrossRefGoogle Scholar
  8. Carlyon, R. P. (1987). A release from masking by continuous, random, notched noise.Journal of the Acoustical Society of America,81, 418–426. doi:10.1121/1.395117CrossRefPubMedGoogle Scholar
  9. Carlyon, R. P. (1989). Changes in the masked thresholds of brief tones produced by prior bursts of noise.Hearing Research,41, 223–235. doi:10.1016/0378-5955(89)90014-2CrossRefPubMedGoogle Scholar
  10. Clément, S., Demany, L., &Semal, C. (1999). Memory for pitch versus memory for loudness.Journal of the Acoustical Society of America,106, 2805–2811. doi:10.1121/1.428106CrossRefPubMedGoogle Scholar
  11. Cowan, N., &AuBuchon, A. M. (2008). Short-term memory loss over time without retroactive stimulus interference.Psychonomic Bulletin & Review,15, 230–235. doi:10.3758/PBR.15.1.230CrossRefGoogle Scholar
  12. Cowan, N., Saults, J. S., &Nugent, L. D. (1997). The role of absolute and relative amounts of time in forgetting within immediate memory: The case of tone-pitch comparisons.Psychonomic Bulletin & Review,4, 393–397.Google Scholar
  13. Cowan, N., Saults, J. S., &Nugent, L. D. (2001). The ravages of absolute and relative amounts of time on memory. In H. L. Roediger III, J. S. Nairne, I. Neath, & A. M. Surprenant (Eds.),The nature of remembering: Essays in honor of Robert G. Crowder (pp. 315–330). Washington, DC: American Psychological Association. doi:10.1037/10394-017CrossRefGoogle Scholar
  14. Dai, H., Scharf, B., &Buus, S. (1991). Effective attenuation of signals in noise under focused attention.Journal of the Acoustical Society of America,89, 2837–2842. doi:10.1121/1.400721CrossRefPubMedGoogle Scholar
  15. Demany, L., &Semal, C. (2008). The role of memory in auditory perception. In W. A. Yost, A. N. Popper, & R. F. Fays (Eds.),Auditory perception of sound sources (pp. 77–113). New York: Springer. doi:10.1007/978-0-387-71305-2_4Google Scholar
  16. Deutsch, D. (1970). Tones and numbers: Specificity of interference in immediate memory.Science,168, 1604–1605. doi:10.1126/ science.168.3939.1604CrossRefPubMedGoogle Scholar
  17. Deutsch, D. (1972a). Effect of repetition of standard and comparison tones on recognition memory for pitch.Journal of Experimental Psychology,93, 156–162. doi:10.1037/h0032496CrossRefPubMedGoogle Scholar
  18. Deutsch, D. (1972b). Mapping of interactions in the pitch memory store.Science,175, 1020–1022. doi:10.1126/science.175.4025.1020CrossRefPubMedGoogle Scholar
  19. Deutsch, D. (1978a). Delayed pitch comparisons and the principle of proximity.Perception & Psychophysics,23, 227–230.Google Scholar
  20. Deutsch, D. (1978b). Interactive effects in memory for harmonic intervals.Perception & Psychophysics,24, 7–10.Google Scholar
  21. Deutsch, D. (1982). The influence of melodic context on pitch recognition judgment.Perception & Psychophysics,31, 407–410.Google Scholar
  22. Deutsch, D. (1984). Memory for nonverbal auditory information: A link between behavioral and physiological studies. In L. R. Squire & N. Butters (Eds.),Neuropsychology of memory (pp. 45–54). New York: Guilford.Google Scholar
  23. Deutsch, D. (1999). The processing of pitch combinations. In D. Deutsch (Ed.),The psychology of music (2nd ed., pp. 349–411). San Diego: Academic Press.CrossRefGoogle Scholar
  24. Deutsch, D., &Feroe, J. (1975). Disinhibition in pitch memory.Perception & Psychophysics,17, 320–324.Google Scholar
  25. Deutsch, D., &Roll, P. L. (1974). Error patterns in delayed pitch comparison as a function of relational context.Journal of Experimental Psychology,103, 1027–1034. doi:10.1037/h0037359CrossRefPubMedGoogle Scholar
  26. Durlach, N. I., &Braida, L. D. (1969). Intensity perception: I. Preliminary theory of intensity resolution.Journal of the Acoustical Society of America,46, 372–383. doi:10.1121/1.1911699CrossRefPubMedGoogle Scholar
  27. Elliott, L. L. (1970). Pitch memory for short tones.Perception & Psychophysics,8, 379–384.Google Scholar
  28. Fougnie, D., &Marois, R. (2009). Dual-task interference in visual working memory: A limitation in storage capacity but not in encoding or retrieval.Attention, Perception, & Psychophysics,71, 1831–1841. doi:10.3758/APP.71.8.1831CrossRefGoogle Scholar
  29. Garrido, M. I., Kilner, J. M., Stephan, K. E., &Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms.Clinical Neurophysiology,120, 453–463. doi:10.1016/j.clinph.2008.11.029CrossRefPubMedGoogle Scholar
  30. Gourevitch, V., &Galanter, E. (1967). A significance test for one-parameter isosensitivity functions.Psychometrika,32, 25–33. doi:10.1007/BF02289402CrossRefPubMedGoogle Scholar
  31. Green, D. M. (1988).Profile analysis: Auditory intensity discrimination. New York: Oxford University Press.Google Scholar
  32. Green, D. M., Kidd, G., Jr., &Picardi, M. C. (1983). Successive versus simultaneous comparison in auditory intensity discrimination.Journal of the Acoustical Society of America,73, 639–643. doi:10.1121/1.389009CrossRefPubMedGoogle Scholar
  33. Green, T. J., &McKeown, J. D. (2001). Capture of attention in selective frequency listening.Journal of Experimental Psychology: Human Perception & Performance,27, 1197–1210. doi:10.1037/0096-1523.27.5.1197CrossRefGoogle Scholar
  34. Green, T. [J.], &McKeown, [J.] D. (2007). The role of auditory memory traces in attention to frequency.Perception & Psychophysics,69, 942–951.Google Scholar
  35. Hafter, E. R., Schlauch, R. S., &Tang, J. (1993). Attending to auditory filters that were not stimulated directly.Journal of the Acoustical Society of America,94, 743–747. doi:10.1121/1.408203CrossRefPubMedGoogle Scholar
  36. Harris, J. D. (1952). The decline of pitch discrimination with time.Journal of Experimental Psychology,43, 96–99. doi:10.1037/h0057373CrossRefPubMedGoogle Scholar
  37. Horváth, J., Czigler, I., Jacobsen, T., Maess, B., Schröger, E., &Winkler, I. (2008). MMN or no MMN: No magnitude of deviance effect on the MMN amplitude.Psychophysiology,45, 60–69. doi:10.1111/j.1469-8986.2007.00599.xPubMedGoogle Scholar
  38. Hourihan, K. L., Ozubko, J. D., &MacLeod, C. M. (2009). Directed forgetting of visual symbols: Evidence for nonverbal selective rehearsal.Memory & Cognition,37, 1059–1068. doi:10.3758/ MC.37.8.1059CrossRefGoogle Scholar
  39. Hübner, R., &Hafter, E. R. (1995). Cuing mechanisms in auditory signal detection.Perception & Psychophysics,57, 197–202.Google Scholar
  40. Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., et al. (2004). Human posterior auditory cortex gates novel sounds to consciousness.Proceedings of the National Academy of Sciences,101, 6809–6814. doi:10.1073/ pnas.0303760101CrossRefGoogle Scholar
  41. Jones, D. M., Macken, W. J., &Harries, C. (1997). Disruption of short-term recognition memory for tones: Streaming or interference?Quarterly Journal of Experimental Psychology,50A, 337–357. doi:10.1080/713755707CrossRefGoogle Scholar
  42. Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., &Moore, K. S. (2008). The mind and brain of short-term memory.Annual Review of Psychology,59, 193–224. doi:10.1146/annurev.psych.59.103006.093615CrossRefPubMedGoogle Scholar
  43. Kaernbach, C. (2001). Parameters of echoic memory. In E. Sommerfeld, R. Kompass, & T. Lachmann (Eds.),Proceedings of the seventeenth annual meeting of the International Society for Psychophysics (pp. 105–110). Lengerich: Pabst Science.Google Scholar
  44. Kaernbach, C. (2004a). Auditory sensory memory and short-term memory. In C. Kaernbach, E. Schröger, & H. Müller (Eds.),Psychophysics beyond sensation: Laws and invariants of human cognition (pp. 331–348). Mahwah, NJ: Erlbaum.Google Scholar
  45. Kaernbach, C. (2004b). The memory of noise.Experimental Psychology,51, 240–248. doi:10.1027/1618-3169.51.4.240PubMedGoogle Scholar
  46. Kaernbach, C., &Schlemmer, K. (2008). The decay of pitch memory during rehearsal.Journal of the Acoustical Society of America,123, 1846–1849. doi:10.1121/1.2875365CrossRefPubMedGoogle Scholar
  47. Kidd, G., Jr., &Mason, C. R. (1992). A new technique for measuring spectral shape discrimination.Journal of the Acoustical Society of America,91, 2855–2864. doi:10.1121/1.402966CrossRefPubMedGoogle Scholar
  48. Lewandowsky, S., Brown, G. D. A., Wright, T., &Nimmo, L. M. (2006). Timeless memory: Evidence against temporal distinctiveness models of short-term memory for serial order.Journal of Memory & Language,54, 20–38. doi:10.1016/j.jml.2005.08.004CrossRefGoogle Scholar
  49. Lewandowsky, S., Oberauer, K., &Brown, G. D. A. (2009). No temporal decay in verbal short-term memory.Trends in Cognitive Sciences,13, 120–126. doi:10.1016/j.tics.2008.12.003CrossRefPubMedGoogle Scholar
  50. Lu, Z.-L., Williamson, S. J., &Kaufman, L. (1992). Behavioral lifetime of human auditory sensory memory predicted by physiological measures.Science,258, 1668–1670. doi:10.1126/science.1455246CrossRefPubMedGoogle Scholar
  51. Macmillan, N. A., &Creelman, C. D. (2005).Detection theory: A user’s guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  52. Marascuilo, L. A. (1970). Extensions of the significance test for oneparameter signal detection hypotheses.Psychometrika,35, 237–243. doi:10.1007/BF02291265CrossRefGoogle Scholar
  53. Massaro, D. W. (1970). Consolidation and interference in the perceptual memory system.Perception & Psychophysics,7, 153–156.Google Scholar
  54. Massaro, D. W. (1972). Preperceptual images, processing time and perceptual units in auditory perception.Psychological Review,79, 124–145. doi:10.1037/h0032264CrossRefPubMedGoogle Scholar
  55. May, P. J. C., &Tiitinen, H. (2007). The role of adaptation-based memory in auditory cortex.International Congress Series,1300, 53–56. doi:10.1016/j.ics.2007.01.051CrossRefGoogle Scholar
  56. May, P. J. C., &Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained.Psychophysiology,47, 66–122. doi:10.1111/j.1469-8986.2009.00856.xCrossRefPubMedGoogle Scholar
  57. May, P. J. C., Tiitinen, H., Ilmoniemi, R. J., Nyman, G., Taylor, J. G., &Näätänen, R. (1999). Frequency change detection in human auditory cortex.Journal of Computational Neuroscience,6, 99–120. doi:10.1023/A:1008896417606CrossRefPubMedGoogle Scholar
  58. McGaugh, J. L. (2000). Memory—A century of consolidation.Science,287, 248–251. doi:10.1126/science.287.5451.248CrossRefPubMedGoogle Scholar
  59. McKeown, D., &Wellsted, D. (2009). Auditory memory for timbre.Journal of Experimental Psychology: Human Perception & Performance,35, 855–875. doi:10.1037/a0013708CrossRefGoogle Scholar
  60. Mercer, T., &McKeown, D. (2010). Interference in short-term auditory memory.Quarterly Journal of Experimental Psychology,63, 1256–1265. doi:10.1080/17470211003802467CrossRefGoogle Scholar
  61. Michael, G. A. (2007). A significance test of interaction in 2xK designs with proportions.Tutorials in Quantitative Methods for Psychology,3, 1–7.Google Scholar
  62. Moore, B. C. J., &Gockel, H. (2002). Factors influencing sequential stream segregation.Acta Acustica United With Acustica,88, 320–333.Google Scholar
  63. Näätänen, R., Jacobsen, T., &Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence.Psychophysiology,42, 25–32. doi:10.1111/j.1469-8986.2005.00256.xCrossRefPubMedGoogle Scholar
  64. Nairne, J. S. (2003). Sensory and working memory. In I. B. Weiner (Series Ed.) & A. F. Healy & R. W. Proctor (Vol. Eds.),Handbook of psychology: Vol. 4. Experimental psychology (pp. 423–444). New York: Wiley.Google Scholar
  65. Nosofsky, R. M. (1983). Shifts of attention in the identification and discrimination of intensity.Perception & Psychophysics,33, 103–112.Google Scholar
  66. Oberauer, K. (2009). Interference between storage and processing in working memory: Feature overwriting, not similarity-based competition.Memory & Cognition,37, 346–357. doi:10.3758/MC.37.3.346CrossRefGoogle Scholar
  67. Oberauer, K., &Lange, E. B. (2008). Interference in verbal working memory: Distinguishing similarity-based competition, feature overwriting, and feature migration.Journal of Memory & Language,58, 730–745. doi:10.1016/j.jml.2007.09.006CrossRefGoogle Scholar
  68. Oberle, C. D., &Amazeen, E. L. (2003). Independence and separability of volume and mass in the size-weight illusion.Perception & Psychophysics,65, 831–843.Google Scholar
  69. Okamoto, H., Ross, B., Kakigi, R., Kubo, T., &Pantev, C. (2005). The time course of N1m decline caused by exposure to noise with strong spectral contrasts.International Congress Series,1278, 23–26. doi:10.1016/j.ics.2004.11.006CrossRefGoogle Scholar
  70. Pechmann, T., &Mohr, G. (1992). Interference in working memory for tonal pitch: Implications for a working-memory model.Memory & Cognition,20, 314–320.Google Scholar
  71. Ries, D. T., &DiGiovanni, J. J. (2007). Release from interference in auditory working memory for pitch.Hearing Research,230, 64–72. doi:10.1016/j.heares.2007.04.003CrossRefPubMedGoogle Scholar
  72. Ries, D. T., &DiGiovanni, J. J. (2009). Effects of recurrent tonal information on auditory working memory for pitch.Hearing Research,255, 14–21. doi:10.1016/j.heares.2009.05.002CrossRefPubMedGoogle Scholar
  73. Ruusuvirta, T. (2000). Proactive interference of a sequence of tones in a two-tone pitch comparison task.Psychonomic Bulletin & Review,7, 327–331.Google Scholar
  74. Ruusuvirta, T., Astikainen, P., &Wikgren, J. (2002). Proactive interference of differently ordered tone sequences with the accuracy and speed of two-tone frequency comparisons.Music Perception,19, 551–563. doi:10.1525/mp.2002.19.4.551CrossRefGoogle Scholar
  75. Ruusuvirta, T., Wikgren, J., &Astikainen, P. (2008). Proactive interference in a two-tone pitch-comparison task without additional interfering tones.Psychological Research,72, 74–78. doi:10.1007/ s00426-006-0094-yCrossRefPubMedGoogle Scholar
  76. Semal, C., Demany, L., Ueda, K., &Hallé, P.-A. (1996). Speech versus nonspeech in pitch memory.Journal of the Acoustical Society of America,100, 1132–1140. doi:10.1121/1.416298CrossRefPubMedGoogle Scholar
  77. Snyder, J. S., Carter, O. L., Lee, S.-K., Hannon, E. E., &Alain, C. (2008). Effects of context on auditory stream segregation.Journal of Experimental Psychology: Human Perception & Performance,34, 1007–1016. doi:10.1037/0096-1523.34.4.1007CrossRefGoogle Scholar
  78. Starr, G. E., &Pitt, M. A. (1997). Interference effects in short-term memory for timbre.Journal of the Acoustical Society of America,102, 486–494. doi:10.1121/1.419722CrossRefPubMedGoogle Scholar
  79. Sussman, E. S., &Gumenyuk, V. (2005). Organization of sequential sounds in auditory memory.NeuroReport,16, 1519–1523. doi:10.1097/01.wnr.0000177002.35193.4cCrossRefPubMedGoogle Scholar
  80. Sussman, E. [S.], &Winkler, I. (2001). Dynamic sensory updating in the auditory system.Cognitive Brain Research,12, 431–439. doi:10.1016/S0926-6410(01)00067-2CrossRefPubMedGoogle Scholar
  81. Tarkka, I. M., Lehtovirta, M., Soininen, H., Pääkkönen, A., Karhu, J., &Partanen, J. (2002). Auditory adaptation is differentially impaired in familial and sporadic Alzheimer’s disease.Biomedicine & Pharmacotherapy,56, 45–49. doi:10.1016/S0753-3322(01)00149-4CrossRefGoogle Scholar
  82. Ueda, K. (2004). Short-term auditory memory interference: The Deutsch demonstration revisited.Acoustical Science & Technology,25, 457–467. doi:10.1250/ast.25.457CrossRefGoogle Scholar
  83. Ulanovsky, N., Las, L., Farkas, D., &Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons.Journal of Neuroscience,24, 10440–10453. doi:10.1523/JNEUROSCI.1905-04.2004CrossRefPubMedGoogle Scholar
  84. Ulanovsky, N., Las, L., &Nelken, I. (2003). Processing of lowprobability sounds by cortical neurons.Nature Neuroscience,6, 391–398. doi:10.1038/nn1032CrossRefPubMedGoogle Scholar
  85. Visscher, K. M., Kahana, M., &Sekuler, R. (2009). Trial-to-trial carryover in auditory short-term memory.Journal of Experimental Psychology: Learning, Memory, & Cognition,35, 46–56. doi:10.1037/ a0013412CrossRefGoogle Scholar
  86. von der Behrens, W., Bäuerle, P., Kössl, M., &Gaese, B. H. (2009). Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat.Journal of Neuroscience,29, 13837–13849. doi:10.1523/JNEUROSCI.3475-09.2009CrossRefPubMedGoogle Scholar
  87. Williamson, V. J., Baddeley, A. D., &Hitch, G. J. (2010). Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity.Memory & Cognition,38, 163–175. doi:10.3758/MC.38.2.163CrossRefGoogle Scholar
  88. Winkler, I. (2007). Interpreting the mismatch negativity.Journal of Psychophysiology,21, 147–163. doi:10.1027/0269-8803.21.34.147CrossRefGoogle Scholar
  89. Winkler, I., &Cowan, N. (2005). From sensory to long-term memory: Evidence from auditory memory reactivation studies.Experimental Psychology,52, 3–20. doi:10.1027/1618-3169.52.1.3PubMedGoogle Scholar
  90. Winkler, I., Karmos, G., &Näätänen, R. (1996). Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential.Brain Research,742, 239–252. doi:10.1016/S0006-8993(96)01008-6CrossRefPubMedGoogle Scholar
  91. Winkler, I., Sussman, E., Tervaniemi, M., Horváth, J., Ritter, W., &Näätänen, R. (2003). Preattentive auditory context effects.Cognitive, Affective, & Behavioral Neuroscience,3, 57–77. doi:10.3758/ CABN.3.1.57CrossRefGoogle Scholar
  92. Wixted, J. T. (2004). The psychology and neuroscience of forgetting.Annual Review of Psychology,55, 235–269. doi:10.1146/annurev.psych.55.090902.141555CrossRefPubMedGoogle Scholar
  93. Zhang, W., &Luck, S. J. (2009). Sudden death and gradual decay in visual working memory.Psychological Science,20, 423–428. doi:10.1111/j.1467-9280.2009.02322.xCrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  1. 1.Institute of Psychological SciencesUniversity of LeedsLeedsEngland

Personalised recommendations