Psychonomic Bulletin & Review

, Volume 11, Issue 3, pp 515–520 | Cite as

Components of working memory and somatic markers in decision making

Brief Reports


According to Damasio’s somatic marker hypothesis, affective reactions ordinarily guide and simplify decision making. In an earlier study, we used a modified version of the gambling task developed by Bechara and colleagues so that we could explore the relations among decision making, working memory (WM) load, and formation of somatic markers. This prior work found that an increased WM load produced by secondary tasks interfered with the development of somatic markers and led to poorer gambling task performance. In the present study, we tested whether secondary tasks affect the executive functions of WM, verbal buffering, or both. Our findings indicate that verbal buffering alone does not interfere with gambling task performance or the development of somatic markers. Interference with the executive functions of WM is necessary to disrupt gambling performance and somatic markers.


  1. Baddeley, A. D., Chincotta, D., &Adlam, A. (2001). Working memory and the control of action: Evidence from task switching.Journal of Experimental Psychology: General,130, 641–657.CrossRefGoogle Scholar
  2. Baddeley, A. D., &Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.),The psychology of learning and motivation (Vol. 8, pp. 47–89). New York: Academic Press.Google Scholar
  3. Bechara, A., Damasio, A. R., Damasio, H., &Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex.Cognition,50, 7–15.PubMedCrossRefGoogle Scholar
  4. Bechara, A., Damasio, H., Tranel, D., &Damasio, A. R. (1998). Dissociation of working memory from decision-making within the human prefrontal cortex.Journal of Neuroscience,18, 428–437.PubMedGoogle Scholar
  5. Bechara, A., Damasio, H., &Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex.Cerebral Cortex,10, 295–307.PubMedCrossRefGoogle Scholar
  6. Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S.W., &Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers.Neuropsychologia,39, 376–389.PubMedCrossRefGoogle Scholar
  7. Bechara, A., Dolan, S., &Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward?Neuropsychologia,40, 1690–1705.PubMedCrossRefGoogle Scholar
  8. Bechara, A., Tranel, D., Damasio, H., &Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to the prefrontal cortex.Cerebral Cortex,6, 215–225.PubMedCrossRefGoogle Scholar
  9. Damasio, A. R. (1994).Descartes’ error: Emotion, reason, and the human brain. New York: Grosset/Putnam.Google Scholar
  10. Damasio, A. R. (1998). The somatic marker hypothesis and the possible functions of prefrontal cortex. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.),The prefrontal cortex (pp. 36–50). New York: Oxford University Press.Google Scholar
  11. Dawson, M. E., Schell, A. M., &Filion, D. L. (2000). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.),Handbook of psychophysiology (2nd ed., pp. 200–223). New York: Cambridge University Press.Google Scholar
  12. Dunbar, K., &Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects. In J. Grafman & K. J. Holyoak (Eds.),Structure and functions of the human prefrontal cortex (pp. 289–304). New York: New York Academy of Sciences.Google Scholar
  13. Evenden, J. L. (1999). Varieties of impulsivity.Psychopharmacology,146, 348–361.PubMedCrossRefGoogle Scholar
  14. Fuster, J. M. (1999). Cognitive functions of the frontal lobes. In B. L. Miller & J. L. Cummings (Eds.),The human frontal lobes: Functions and disorders (pp. 187–195). New York: Guilford.Google Scholar
  15. Hinson, J. M., Jameson, T. L., &Whitney, P. (2002). Somatic markers, working memory, and decision making.Cognitive, Affective, & Behavioral Neuroscience,2, 341–353.CrossRefGoogle Scholar
  16. Hinson, J. M., Jameson, T. L., &Whitney, P. (2003). Impulsive decision making and working memory.Journal of Experimental Psychology: Learning, Memory, & Cognition,29, 298–306.CrossRefGoogle Scholar
  17. Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of human decision making.Neuroscience & Biobehavioral Reviews,26, 631–664.CrossRefGoogle Scholar
  18. Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N. M., Aitken, M., &Robbins, T. (2002). Decision making processes following damage to the prefrontal cortex.Brain,125, 624–639.PubMedCrossRefGoogle Scholar
  19. Miller, E. K., &Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.Annual Review of Neuroscience,24, 167–202.PubMedCrossRefGoogle Scholar
  20. Miyake A., &Shah, P. (1999).Models of working memory. New York: Cambridge University Press.Google Scholar
  21. Patton, J. H., Stanford, M. S., &Barratt, E. S. (1995). Factor structure of the Barratt Impulsiveness Scale.Journal of Clinical Psychology,51, 768–774.PubMedCrossRefGoogle Scholar
  22. Shallice, T., &Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man.Brain,114, 727–741.PubMedCrossRefGoogle Scholar
  23. Smith, E. E., &Jonides, J. (1999). Storage and executive processes in the frontal lobes.Science,283, 1657–1661.PubMedCrossRefGoogle Scholar
  24. Whitney, P., Jameson, T. L., & Hinson, J. M. (2002, November).Working memory and behavior: From executive control to self-control. Paper presented at the 43rd Annual Meeting of the Psychonomic Society, Kansas City, MO.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2004

Authors and Affiliations

  • Tina L. Jameson
    • 1
  • John M. Hinson
    • 1
  • Paul Whitney
    • 1
  1. 1.Department of PsychologyWashington State UniversityPullman

Personalised recommendations